

February 4, 2014

File: 17-971-18

Cowichan Valley Regional District 175 Ingram Street Duncan, BC V9L 1N8

Attention: Emily Doyle-Yamaguchi

## NEW MONITORING WELL CONSTRUCTION AND WELL SAMPLING FISHER ROAD GROUNDWATER INVESTIGATION

Dear Emily:

Thurber Engineering Ltd. (Thurber) is pleased to submit this report summarizing the construction of a new up-gradient monitoring well (MW13-4) and sampling of the new and existing monitoring wells (MW12-1, -2, and -3).

Use of this document is subject to our Statement of Limitations and Conditions, which is included at the end of the text.

## 1. BACKGROUND AND SCOPE OF WORK

Thurber was retained by the Cowichan Valley Regional District (CVRD) in 2011 to investigate the source of nitrate contamination in groundwater in the area of Fisher Road in Cobble Hill, BC. A series of phased studies were undertaken by Thurber between 2011 and 2013 (i.e. 2011a, 2011b, 2013) which included the drilling and sampling of three groundwater monitoring wells (i.e. MW12-1, MW12-2 and MW12-3, see Drawing 17-971-18-1 in Appendix A) located immediately down-gradient from three suspected sources of groundwater nitrate inputs which included commercial composting operations at 1345 and 1355 Fisher Road and commercial greenhouses at 1360 Fisher Road/1375 Fairfield Road. Our 2013 investigation revealed that MW12-2 contained the highest groundwater nitrate concentrations of the three previously installed wells and the nitrate from the well had a distinct isotopic signature consistent with being sourced from synthetic-based chemical nitrate fertilizers. The nitrate concentrations observed at MW12-2 but still exceeded the BC Contaminated Sites Regulation (CSR) Drinking Water (DW) standards. The isotopic signatures of the nitrates within the groundwater at MW12-1 and MW12-3 were similar to each other and consistent with being sourced from decomposing organic material.

One of the recommendations of our April 30, 2013 groundwater investigation report was that a new groundwater monitoring well be installed to the south (i.e. up-gradient) of MW12-2 and the greenhouses at 1360 Fisher Road/1375 Fairfield Road for the purpose of delineating the southward extent of the plume(s).

The original scope of work for this project (letter dated May 14, 2013) included locating and directing the construction of a new up-gradient well (labelled MW13-4), developing and sampling



the new well, and reporting on the results. This scope of work was expanded in November 2013 to include sampling the existing 3 monitoring wells.

This report summarizes the results of new well construction and development and presents the data and interpretations from groundwater sampling and analysis.

## 2. METHODOLOGY

## 2.1 New Well Construction and Development

Drilling and construction of MW13-4 was conducted by Drillwell Enterprises Ltd. (Drillwell) on November 26, 2013. The new well is located on the Fairfield Road right-of-way in the general area recommended by Thurber (see Drawing 17-971-18-1). The borehole was advanced through sand to a depth of 41 m below the ground surface using the dual-rotary method of drilling. Saturated conditions were observed below a depth of about 34 m.

The well was constructed using 50 mm-diameter PVC with a 1.5 m long screened section from 69.7 to 68.2 masl (i.e. 39 to 37.5 meters below ground). The top of the slotted section was set at approximately 3.5 m below the water table as measured on November 28, 2013. The depth below the water table of the screened interval at MW13-4 is similar to the other three monitoring wells. Filter sand (i.e. sterile sand with a grain size range of approximately 1 to 2 mm) was placed around the well screen and 15 cm above and below it in accordance with the B.C. Ministry of Environment Technical Guidance Document #8. A 1.8 m thick layer of bentonite was placed immediately above the sand pack followed by alternating layers of pea gravel (6 m thick) and bentonite (0.9 m thick) with a 4.6 m thick bentonite layer at the surface. The well casing is protected at the surface with a locked steel monument that was concreted in place.

The completed well was developed on November 28, 2013 by surging and pumping using a Waterra inertial pump with dedicated tubing and foot valve. Development was considered complete once a sufficient amount of particulate was removed from the well (evidenced by significant clarification of the water).

Details of the MW13-4 lithology and construction are provided in Figure 1 and the original driller's log, which are both located in Appendix B. Table 1 in Appendix B summarizes the construction details for all 4 of the monitoring wells.

## 2.2 Well Sampling and Water Level Monitoring

All of the monitoring wells (MW12-1 to -3 and MW13-4) were purged and sampled on November 28, 2013 using a Waterra Hydrolift 2 inertial pump with the existing tubing and foot valves dedicated to each well. Before sampling, at least 3 well volumes of water were purged from each well and field parameters (electrical conductivity (EC), pH, and temperature), collected during purging, were observed to stabilize.

Water samples were placed into laboratory-supplied containers specific to each analysis. Where applicable, preservatives were added in the field. Filtration through a 45  $\mu$ m, in-line filter for



dissolved metals and nitrate isotopes analyses was conducted in the Thurber laboratory on the same day as sampling. The bottles were then stored in a refrigerator before being delivered to Maxxam Analytics in Victoria on November 29, 2013. The samples for isotope analysis were shipped to the University of Calgary Isotope Science Laboratory on December 2, 2013.

The following analyses were conducted on the groundwater samples:

- Routine parameters including major ions, pH, alkalinity, hardness, total dissolved solids, etc.
- Nitrogen species (nitrate, nitrite, ammonia, total nitrogen and total Kjeldahl nitrogen)
- Total and dissolved metals
- Nitrate isotopes (<sup>15</sup>N and <sup>18</sup>O)

During well sampling the existing data-logging transducers were downloaded. The transducers have been continuously measuring water levels in wells MW12-1 to MW12-3 since September 2012. After collecting the data, the transducer from MW12-2 was removed and placed in the new well MW13-4.

## 3. MONITORING AND SAMPLING RESULTS

Continuous and manual-measured groundwater elevations in the monitoring wells are shown in Figure 2 in Appendix B. As in the past, high frequency, small-scale fluctuations in groundwater elevations (on the order of 0.5 m) are evident. These are thought to result from the delayed transfer of barometric fluctuations through the thick unsaturated sands that overlie the aquifer (Thurber, 2013). The relative gradients between wells MW12-1 to -3 observed since January 2013 (the previous download date) are similar to those from September 2012. This is consistent with our previous interpretation that the flow gradient in this area of the aquifer does not change significantly over time. Now that over a year of data are available, a larger scale, seasonal trend (on the order of 0.2 to 0.4 m) in the water levels is apparent. As is typical in this climatic region, the highest groundwater elevations in the aquifer occur in the late spring-early summer and are the lowest in the fall.

The groundwater flow gradient based on manual water level measurements taken on November 28, 2013 is also consistent with previous estimates, trending toward the north-northwest at a magnitude of approximately 0.004. The measured flow directions obtained from groundwater level measurements collected from three separate occasions are shown on Drawing 17-971-18-1 as dashed-line arrows.

Table 2 in Appendix C summarizes the sampling results and compares them to applicable Canadian Drinking Water Quality Guideline (CDWQG) values and to BC CSR Schedule 6 Generic Numerical Standards for Drinking Water (DW). Concentrations that exceed the CDWQG are highlighted yellow, those that exceed the CSR standards are shaded tan, and numbers that



exceed both standards are shaded red. Note that the CSR standards apply to dissolved metals while the CDWQG apply to total metals. Laboratory data sheets are also included in Appendix C.

All sampled parameters in MW13-4 were below the respective GCDWQ and CSR guideline values with the exception of total iron and manganese (12.9 and 0.988 mg/L respectively) which exceeded the GCDWQ guideline aesthetic objectives (0.3 and 0.05 mg/L). These metals are commonly found in abundance in regional domestic wells, and are present above the Guideline values in all the monitoring wells on all sampling dates. Total iron and manganese are therefore thought to be naturally occurring in the aquifer at this location.

Concentrations of major ions and dissolved/total metals in the samples from MW12-1 to -3 were generally consistent with those of historic sampling, including the previously-described notable differences in chemistry between wells such as: elevated total dissolved solids (TDS) at MW12-2 (780 mg/L compared to 293, 591, and 314 in MW12-1, -3, and MW13-4 respectively) and higher chloride at MW12-3 (180 mg/L versus 26, 38, and 23 mg/L).

The nitrate and nitrate isotope concentrations in the previously sampled monitoring wells were also similar to historic values. Nitrate was 23.2 mg/L at MW12-1, 91.7 mg/L at MW12-2, and 16.9 mg/L at MW12-3, which all exceeded the CDWQG and CSR DW criterion value of 10 mg/L. The nitrate concentration in the new up-gradient well was 0.252 mg/L, which is significantly lower than the nitrate concentrations observed in the other wells.

Nitrate isotope (<sup>15</sup>N and <sup>18</sup>O) results for the recent sampling have been plotted with the previous results on Figure 3 in Appendix C. As can be seen on the figure, the isotope ratios obtained from the most recent sampling of monitoring wells MW12-1 to -3 plot in similar locations to previous ones. Our interpretation continues to be that the groundwater at MW12-2 has a different, synthetic fertilizer-based nitrate isotope signature than that of MW12-1 and -3, which is indicative of organic material-sourced nitrates (Thurber, 2013). The nitrate isotope ratios for the new up-gradient monitoring well MW13-4 plot in a distinctly different area from those of the other monitoring wells suggesting a different nitrate source.

## 4. CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the recent up-gradient monitoring well drilling, existing and new well sampling and groundwater level monitoring, we conclude the following:

- Water level measurements confirm that the horizontal flow gradient in the area is toward the north-northwest. This flow direction is consistent with previously determined results. The consistency in the relative groundwater elevations over the 14 month period of continuous monitoring indicate that significant changes to the seasonal groundwater flow direction do not occur within the aquifer in the Fisher Road area.
- The results of the most-recent sample analysis from MW12-1, MW12-2 and MW12-3 are consistent with previous results. Additional sampling will be required to determine if temporal trends in total or dissolved groundwater chemistry are occurring.



- The low nitrate concentration detected in the up-gradient well indicates that a source of groundwater nitrate contamination exists between the MW13-4 and MW12-2 well locations.
- The low groundwater nitrate concentration (and its distinctive isotopic signature) at the upgradient well may suggest a natural source of nitrate indicative of un-impacted groundwater conditions in the aquifer.
- The conceptual model of the aquifer remains unchanged. There appears to be a minimum of two distinct plumes of nitrate contamination in the area including a synthetic fertilizerbased plume originating from the area of 1360 Fisher Road and one or more organicmaterial sourced nitrate plumes originating from the area of 1345 and 1355 Fisher Road.

On-going annual monitoring and sampling of the 4 monitoring wells is recommended to assess trends in nitrate concentrations and water levels over time. A plan and cost for this work was submitted to the CVRD on December 5, 2013.

As stated previously (Thurber, 2013), additional monitoring wells to the north, east, and west of MW12-1, MW12-3, and the composting operations would be required to further delineate the nitrate plume(s) in this area.

## 5. CLOSURE

We trust the above provides the information you require at this time. If you have any questions regarding this document, please contact the undersigned at your earliest convenience.

Yours truly. Thurber Engineering Ltd. Stephen Bean, P.Eng. **Review Principal** Chad Petersmeyer, P.Geo.

Chad Petersmeyer, F Hydrogeologist

Attachments



## 6. **REFERENCES**

Thurber Engineering Ltd., Fisher Road Groundwater Investigation, Cobble Hill, B.C., report submitted to the CVRD, April 30, 2013.

Thurber Engineering Ltd., Preliminary Environmental Assessment, 1355 Fisher Road, Cobble Hill, B.C., report submitted to the CVRD, December 5, 2011a.

Thurber Engineering Ltd., 1355 Fisher Road, Cobble Hill, BC, Groundwater Flow Assessment, report submitted to the CVRD, May 16, 2011b.



## STATEMENT OF LIMITATIONS AND CONDITIONS

#### 1. STANDARD OF CARE

This study and Report have been prepared in accordance with generally accepted engineering or environmental consulting practices in this area. No other warranty, expressed or implied, is made.

#### 2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report which is of a summary nature and is not intended to stand alone without reference to the instructions given to us by the Client, communications between us and the Client, and to any other reports, writings, proposals or documents prepared by us for the Client relative to the specific site described herein, all of which constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. WE CANNOT BE RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

#### 3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to us by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the document, subject to the limitations provided herein, are only valid to the extent that this Report expressly addresses proposed development, design objectives and purposes, and then only to the extent there has been no material alteration to or variation from any of the said descriptions provided to us unless we are specifically requested by the Client to review and revise the Report in light of such alteration or variation or to consider such representations, information and instructions.

#### 4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT OUR WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS WE MAY EXPRESSLY APPROVE. The contents of the Report remain our copyright property. The Client may not give, lend or, sell the Report, or otherwise make the Report, or any portion thereof, available to any person without our prior written permission. Any use which a third party makes of the Report, are the sole responsibility of such third parties. Unless expressly permitted by us, no person other than the Client is entitled to rely on this Report. We accept no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without our express written permission.

#### 5. INTERPRETATION OF THE REPORT

- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel, may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and this report is delivered on the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. Where special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to us. We have relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, we cannot accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by us. We are entitled to rely on such representations, information and instructions and are not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.



#### INTERPRETATION OF THE REPORT (continued...)

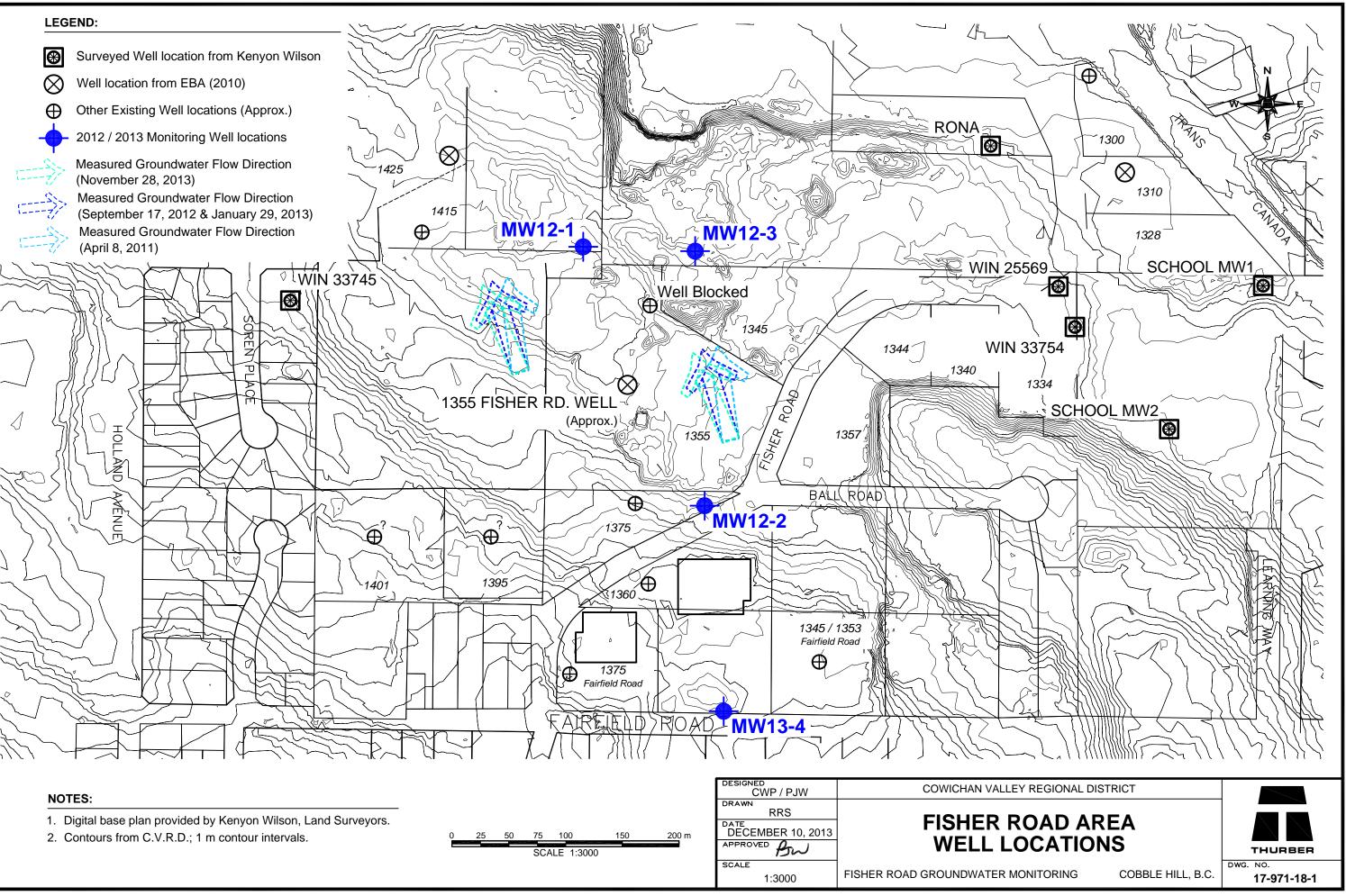
- c) Design Services: The Report may form part of the design and construction documents for information purposes even though it may have been issued prior to the final design being completed. We should be retained to review the final design, project plans and documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the report recommendations and the final design detailed in the contract documents should be reported to us immediately so that we can address potential conflicts.
- d) Construction Services: During construction we must be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

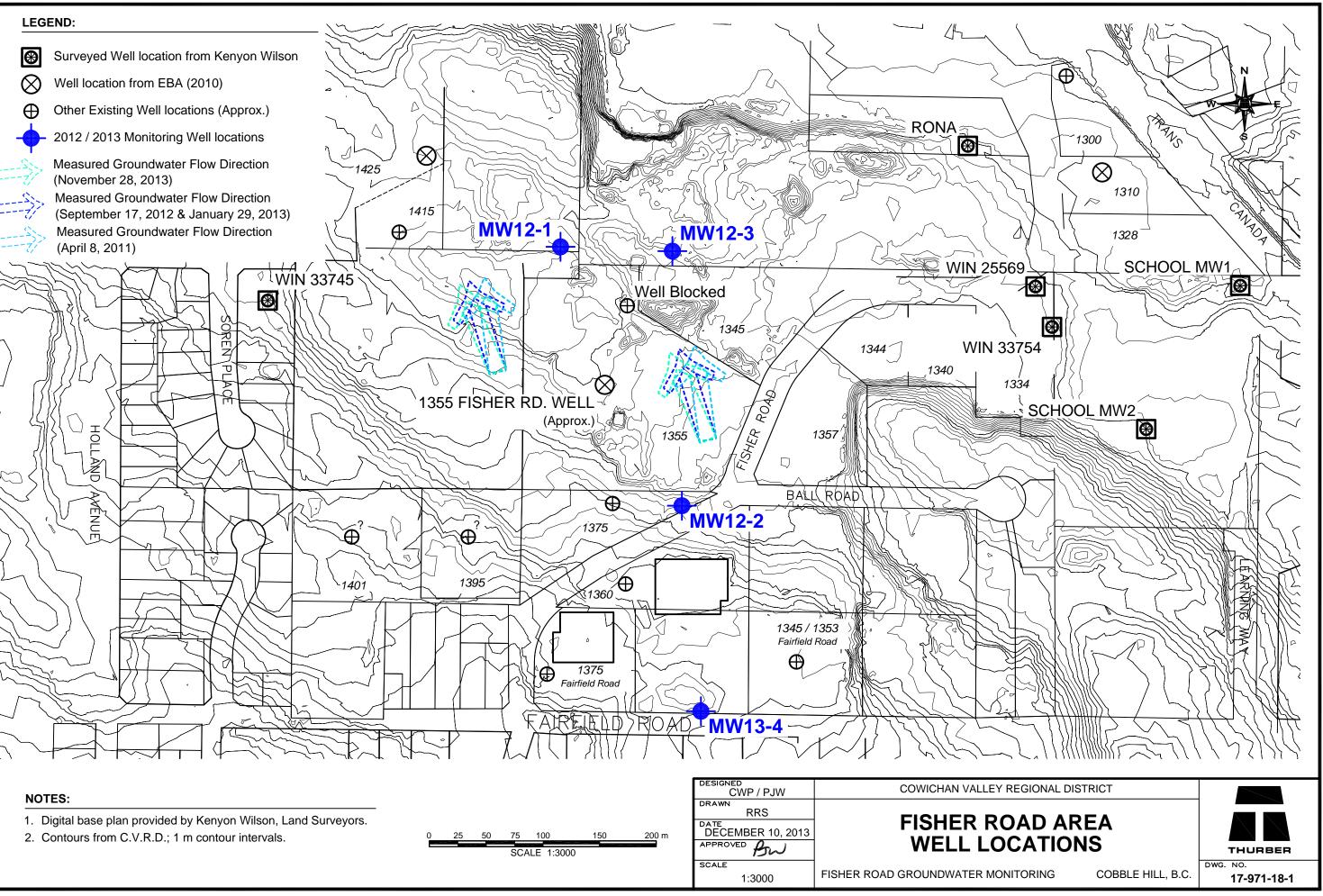
#### 6. **RISK LIMITATION**

Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause an accidental release of those substances. In consideration of the provision of the services by us, which are for the Client's benefit, the Client agrees to hold harmless and to indemnify and defend us and our directors, officers, servants, agents, employees, workmen and contractors (hereinafter referred to as the "Company") from and against any and all claims, losses, damages, demands, disputes, liability and legal investigative costs of defence, whether for personal injury including death, or any other loss whatsoever, regardless of any action or omission on the part of the Company, that result from an accidental release of pollutants or hazardous substances occurring as a result of carrying out this Project. This indemnification shall extend to all Claims brought or threatened against the Company under any federal or provincial statute as a result of conducting work on this Project. In addition to the above indemnification, the Client further agrees not to bring any claims against the Company in connection with any of the aforementioned causes.

#### 7. SERVICES OF SUBCONSULTANTS AND CONTRACTORS

The conduct of engineering and environmental studies frequently requires hiring the services of individuals and companies with special expertise and/or services which we do not provide. We may arrange the hiring of these services as a convenience to our Clients. As these services are for the Client's benefit, the Client agrees to hold the Company harmless and to indemnify and defend us from and against all claims arising through such hirings to the extent that the Client would incur had he hired those services directly. This includes responsibility for payment for services rendered and pursuit of damages for errors, omissions or negligence by those parties in carrying out their work. In particular, these conditions apply to the use of drilling, excavation and laboratory testing services.


#### 8. CONTROL OF WORK AND JOBSITE SAFETY

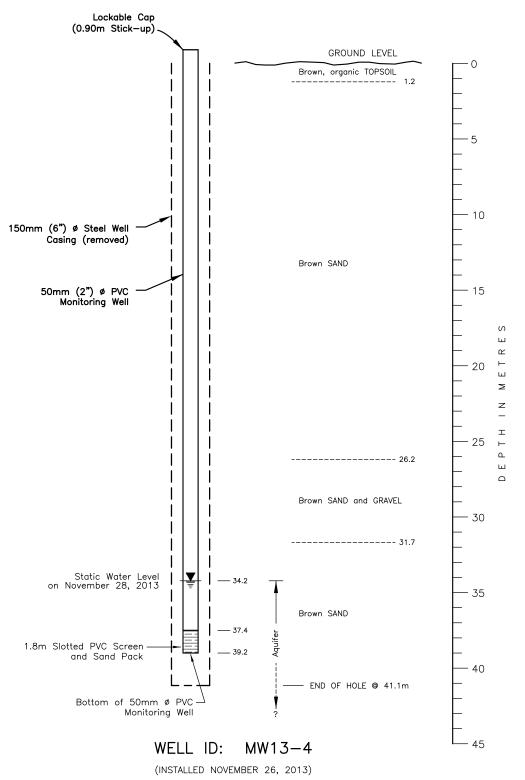

We are responsible only for the activities of our employees on the jobsite. The presence of our personnel on the site shall not be construed in any way to relieve the Client or any contractors on site from their responsibilities for site safety. The Client acknowledges that he, his representatives, contractors or others retain control of the site and that we never occupy a position of control of the site. The Client undertakes to inform us of all hazardous conditions, or other relevant conditions of which the Client is aware. The Client also recognizes that our activities may uncover previously unknown hazardous conditions or materials and that such a discovery may result in the necessity to undertake emergency procedures to protect our employees as well as the public at large and the environment in general. These procedures may well involve additional costs outside of any budgets previously agreed to. The Client agrees to pay us for any expenses incurred as the result of such discoveries and to compensate us through payment of additional fees and expenses for time spent by us to deal with the consequences of such discoveries. The Client also acknowledges that in some cases the discovery of hazardous conditions and materials will require that certain regulatory bodies be informed and the Client agrees that notification to such bodies by us will not be a cause of action or dispute.

#### 9. INDEPENDENT JUDGEMENTS OF CLIENT

The information, interpretations and conclusions in the Report are based on our interpretation of conditions revealed through limited investigation conducted within a defined scope of services. We cannot accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.










## MONITORING WELL 13-4 WELL CONSTRUCTION & LITHOLOGY LOG



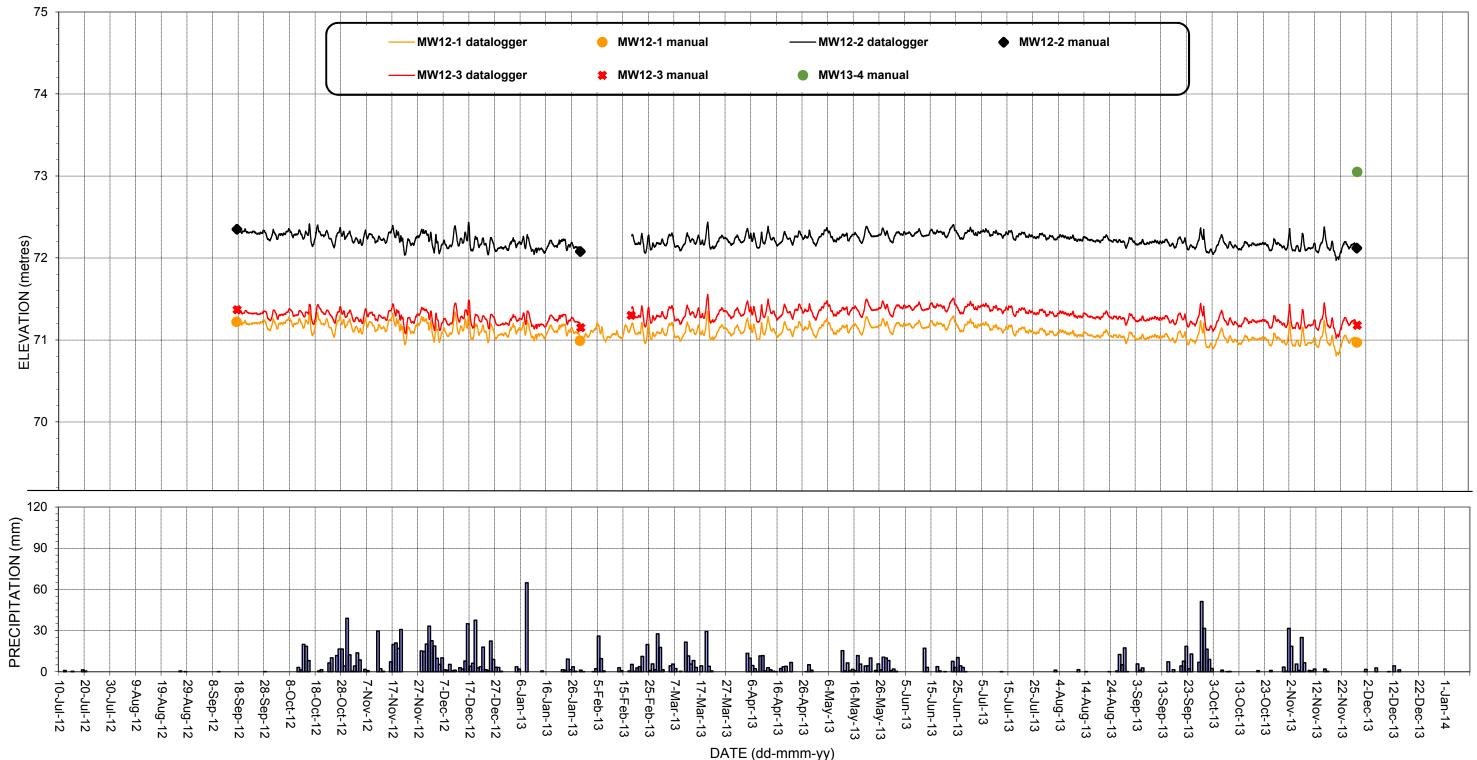




**FIGURE 1** 

| COLL               | TISH<br>JMBIA<br>Environment                  | W                                                          | ell Construc<br>ell Closure I<br>ell Alteration            | Report                                                      | 4994<br>Stan Duncan<br>hone Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ENTERPRIS<br>Polkey Road<br>1, B.C. V9L 6<br>1: 250-746-52 | t<br>W3:ss/A                           | Ministr<br>Con                   | y Well<br>firmati      | ID Plate Number:<br>Tag Number:<br>on/alternative spec<br>ell construction repo                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|-----------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|----------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Red let            | ttering inc                                   | dicates m                                                  | inimum manda                                               | tory information.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | S                                      | ee reverse                       | e for n                | otes & definitions                                                                                                                                                                                                                  | of abbreviations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Owner I            | name:_C                                       | [ow]                                                       | chan                                                       | Valley Re                                                   | sion il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dis                                                        | ×.                                     | CV.                              | RD                     | MWI                                                                                                                                                                                                                                 | 3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mailing            | address:                                      | 175                                                        | - In                                                       | gram 5                                                      | t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Town                                                       | Dur                                    | can                              |                        | Prov.BC Pos                                                                                                                                                                                                                         | stal Code /91 INB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Well Lo            | cation: Ac                                    | ddress: St                                                 | ireet no.                                                  | Street na                                                   | me_Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | irfield                                                    | 0 1                                    | Rd.                              | Tow                    | n Cobble                                                                                                                                                                                                                            | Hill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| or Leg             | al descrip                                    | tion: Lot                                                  | Plan                                                       |                                                             | D.L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Block                                                      | Sec.                                   | Twp.                             | F                      | RgLand Distri                                                                                                                                                                                                                       | ict Shawnigan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| or PID             | 4                                             |                                                            | $\bigcirc$                                                 | ption of well locati                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | 4                                      | rth Sie                          | de                     | of fair SI                                                                                                                                                                                                                          | elt Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ······             | road                                          | Allow                                                      |                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fairfield                                                  |                                        |                                  | 1                      | NW13-                                                                                                                                                                                                                               | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NAD 83<br>(see not | 3: Zone:<br>e 2)                              | 10                                                         |                                                            | orthing: <u>5393</u><br>asting: <u>456</u> /                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m m                                                        | (or)                                   | Latitude (                       |                        | ote 3):                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •                  |                                               | n 🗙 air rot                                                |                                                            | I mud rotary                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m<br>vina ∏iettin                                          |                                        |                                  |                        | specify)                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                               |                                                            |                                                            | Ground elevatio                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                          | -                                      |                                  |                        | GPS                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                                               | -                                                          | Monitor                                                    | 1                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of well:                                                   | 0'                                     | 2                                | . 1                    |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                               |                                                            |                                                            | private domestic                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |                                        |                                  |                        | trial 🗌 other (specify                                                                                                                                                                                                              | ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lithol             | ogic de                                       | scriptio                                                   | n (see notes 7-1                                           | 4) or closure de                                            | scription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (see notes 1                                               | 5 and 16)                              |                                  |                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| From<br>ft (bgl)   | To<br>ft (bgl)                                | Relative<br>Hardnes                                        | e Colour                                                   | Material Description (<br>List in order of d                | Use recomme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ended terms or                                             | reverse.                               | Water-bea<br>Estimated<br>(USgpr | Flow                   | Observations (e.g., fr<br>well sorted, silty wa                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0                  | 4                                             | 5                                                          | Brn                                                        | Tonsoi                                                      | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                                        |                                  | apah a                 |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.25               | i Asia                                        | e dideb                                                    | 968.8.0.0                                                  |                                                             | eg.<br>20 goue des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                                        |                                  | diae                   | ะ 10 ระสะสะที่ ได้เหตุร                                                                                                                                                                                                             | WAA B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4                  | 86                                            | 5                                                          | Brn                                                        | Sand                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gibio                                                      |                                        | Unglow g                         | 30.06                  | as for a depili jech                                                                                                                                                                                                                | such:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    |                                               |                                                            |                                                            | <u>C</u>                                                    | 10100 011 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | isnelsm exti                                               | 0 283000                               | vil svitslet                     | adt ac                 | the usystem and b                                                                                                                                                                                                                   | 9. For s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 86                 | 104                                           | M                                                          | Brn                                                        | Sand B                                                      | Gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1001                                                       |                                        |                                  |                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00                 | 101                                           |                                                            | prii                                                       | Sound y                                                     | yra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ver                                                        | Net Strategy                           |                                  | i actina<br>Di ce      | no de entre de la composition de la com<br>La composition de la c | <u>8. 091 001 000</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1011               | 1.35                                          | 1005                                                       | Bin                                                        | Sand                                                        | Ein.o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to in                                                      | _1                                     | Wate                             | ar b                   | parling at                                                                                                                                                                                                                          | 17-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15                 | 1.11                                          |                                                            |                                                            | I ostorol                                                   | Pea gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 11                                                      | bout -                                 | nite c                           | his                    | a fig on                                                                                                                                                                                                                            | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10                 | 116                                           |                                                            |                                                            | Larerea                                                     | · H I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 +                                                       | Jerner<br>1                            | 1 -                              | . /                    |                                                                                                                                                                                                                                     | 5 ft bent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | - 211                                         | 8                                                          | 11                                                         | Drilles u                                                   | 0,1M 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inr                                                        | eade                                   |                                  | ash                    |                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| In                 | Stalle                                        | d we                                                       | 11 at 12                                                   | 8'. 5ft                                                     | OVC SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | reen                                                       | From                                   | 12                               | 3 1                    | o 128'<br>o 116'                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| . 34               | ind p                                         | ack                                                        | SIOM 1                                                     | 22-6 T                                                      | 0 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-6": 6                                                    | PT 6                                   | entonel                          | a te                   | 5 116                                                                                                                                                                                                                               | o i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Casin              | g details                                     | 5                                                          |                                                            | Wall                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Screen                                                     | details                                |                                  |                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| From               | То                                            | Dia                                                        | Casing Material /                                          | Open Hole Thicknes                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | From                                                       | То                                     | Dia                              |                        | Type (see note 18)                                                                                                                                                                                                                  | Slot Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ft (bgl)           | ft (bgl)                                      | in<br>6"                                                   | ch I Dul                                                   | in J                                                        | Shoe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft (bgl)                                                   | ft (bgl)                               | in<br>7"                         | Di                     | 10 71 . 10 -                                                                                                                                                                                                                        | a. e/140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0                  | 135                                           | B                                                          | Steel- Pul                                                 | ed out                                                      | Recreted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123                                                        | 123                                    | 2 2                              | DIL                    | C Blank pipe<br>Screen                                                                                                                                                                                                              | 02 Sched 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0                  | ź                                             | - 8 D) 6.                                                  | en de voao stab                                            | eisin naiw eisoloni i                                       | lip reast and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123                                                        | 120                                    | 2                                | 140                    | 10 thou.                                                                                                                                                                                                                            | 0,010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0                  | 128                                           | 2"                                                         | PUC Se                                                     | hed 40.                                                     | ni ome ont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nobim Long                                                 | agis rhous                             | no alconste                      | en mo                  |                                                                                                                                                                                                                                     | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L                  |                                               | 7 4                                                        |                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |                                        |                                  |                        | - LADM                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                               |                                                            |                                                            | psDepth:                                                    | <u>15</u> ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                        |                                  |                        | Uncased hole                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                               | n: 🗷 Poure                                                 | ed 🗌 Pumped                                                |                                                             | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                                        | scope                            |                        | ze<br>🗘 Plastic 🔲 Other (s                                                                                                                                                                                                          | and oif ():                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Backfill:          |                                               |                                                            |                                                            | Depth:                                                      | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                                        |                                  |                        | Slotted Perfor                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Liner:             |                                               | Other (sp                                                  | ecify):                                                    | Thislusses                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | -                                      |                                  |                        | Plate Other (spec                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Diameter<br>From:  | 1011 1178-101404 1017 10 Marc 1011 1 10 1 Aug | in<br>To: ft(                                              | bal) Perforated I                                          | Thickness:<br>From: ft (bgl) To:                            | ft (bgl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Filter pack:                                               | From:/ 23                              | 3ft To:12                        | Brt                    | Thickness                                                                                                                                                                                                                           | : <u>2</u> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| r tom.             |                                               | 0                                                          | ogi) i choratoa.i                                          | romr (bgi) ro.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type and s                                                 | ize of mate                            | erial: Tan                       | get                    | : 10/20 SI                                                                                                                                                                                                                          | Iter Sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Devel              | oped by                                       | : NIA                                                      | s: Monit.                                                  | oring well                                                  | antana (1997) ang 2014 (1997) ang 2014 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final w                                                    | ell com                                | pletion                          | data:                  | i lane y ne novem control transformation in a yrangementi                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                               |                                                            | Jetting 🗌 Pumpi                                            | ~                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |                                        | 135                              | ft                     | Finished well depth:                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | (specify):                                    |                                                            | · · · · · · · · · · · · · · · · · · ·                      |                                                             | hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Final stick                                                |                                        |                                  | in                     | Depth to bedrock:                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Notes:             |                                               |                                                            |                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SWL:                                                       |                                        | ft (bt                           |                        | Estimated well yield:                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Well y             | ield esti                                     | imated                                                     | by:                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |                                        |                                  |                        | m, or Artesian pressu                                                                                                                                                                                                               | fected: Yes X No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 🗌 Pump             | oing 🗌 Ai                                     |                                                            | Bailing D Othe                                             |                                                             | Manager of the second |                                                            |                                        | s attached:                      |                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rate:              |                                               |                                                            | USgpm Durati                                               |                                                             | hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                        | formatio                         |                        |                                                                                                                                                                                                                                     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | 00 d. 117900                                  | an it i control and an | (btoc) Pumping                                             |                                                             | ft (btoc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reason for                                                 |                                        |                                  |                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                               |                                                            | y characteris                                              | Stics:<br>Sediment 🗌 Gas                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method of o                                                | closure:                               | ] Poured                         | ] Pum                  | nped                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Colour/o           |                                               | orour                                                      | e.coddy t '                                                | Water sample co                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sealant ma                                                 |                                        |                                  |                        | Backfill material:                                                                                                                                                                                                                  | and the second second second of the second |
|                    |                                               |                                                            | <ul> <li>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</li></ul> | vvater sample co                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Details of cl                                              | osure (see                             | note 17):                        |                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | first last                                    |                                                            | e 19): Sha                                                 | wn Slad                                                     | e/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | 1 11111 111111111111111111111111111111 | · · · · · · · · · · · ·          | 1997 W AND IN 1999 AND |                                                                                                                                                                                                                                     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Registra           | ation no. (s                                  | see note 2                                                 |                                                            | 14121404                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date of                                                    | work (Y                                | YYY/MM/DI                        | D):-                   |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                               |                                                            |                                                            | C. Petersmyre                                               | Thurbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                        | 111/23                           | 5                      | Completed: 20                                                                                                                                                                                                                       | 13/11/26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DECLAR             | ATION: Wel                                    | Il constructio                                             | on, well alteration o                                      | r well closure, as the ca<br>in the <i>Water Act</i> and th | se may be,<br>e Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments                                                   | /                                      |                                  |                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Water Pro          | otection Reg                                  | ulation.                                                   | 4                                                          | 2) /                                                        | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                          |                                        | 1                                |                        |                                                                                                                                                                                                                                     | analogia da ang panaka kaona a jara sanang sana kao da sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -                  | NOTE: The<br>or closure, a                    |                                                            |                                                            | Il report describes the w<br>well performance and           | vorks and hydro<br>water quality at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ogeologic condi<br>re not guarantee                        | tions at the<br>ed as they a           | time of cons<br>are influence    | truction<br>d by a     | , white: Customer cop<br>canary: Driller copy                                                                                                                                                                                       | Sheetof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

number of factors, including natural variability, human activities and condition of the works, which may change over time.


pink: Ministry copy



## TABLE 1: FISHER ROAD GROUNDWATER MONITORING WELL SUMMARY TABLE

| Well ID                        | MW12-1                                                                  | MW12-2                                                                  | MW12-3                                                                  | MW13-4                                                                                    |  |
|--------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| General Location               | North of 1355 Fisher Road<br>East of Galliers Road                      | South of 1355 Fisher Road<br>West of Ball Road Intersection             | North of 1345 Fisher Road                                               | Fairfield Road                                                                            |  |
| UTM Easting                    | 456052.8                                                                | 456159.7                                                                | 456151.3                                                                | 456176.5                                                                                  |  |
| UTM Northing                   | 5393596.6                                                               | 5393368.4                                                               | 5393592.8                                                               | 5393187.2                                                                                 |  |
| Installation Date              | June 18, 2012                                                           | July 31, 2012                                                           | July 26, 2012                                                           | November 26, 2013                                                                         |  |
| Installation Method            | Dual Air Rotary                                                         | Dual Air Rotary                                                         | Dual Air Rotary                                                         | Dual Air Rotary                                                                           |  |
| Ground Elevation (masl)        | 126.3                                                                   | 117.7                                                                   | 122.3                                                                   | 107.2                                                                                     |  |
| Top of Casing Elevation (masl) | 126.86                                                                  | 118.26                                                                  | 123.07                                                                  | 108.17                                                                                    |  |
| Screen Length (m)              | 1.5                                                                     | 1.5                                                                     | 1.5                                                                     | 1.5                                                                                       |  |
| Screen Interval (masl)         | 66.3 to 67.8                                                            | 68.0 to 69.6                                                            | 66.4 to 67.9                                                            | 68.2 to 69.7                                                                              |  |
| Sand Pack                      | 0.3 m above top of screen<br>capped with a 1.2 m long<br>bentonite plug | 0.3 m above top of screen<br>capped with a 1.2 m long<br>bentonite plug | 0.3 m above top of screen<br>capped with a 1.2 m long<br>bentonite plug | 0.15 m above top and below<br>bottom of screen capped with<br>a 1.8 m long bentonite plug |  |
| Well Backfill                  | gravel + bentonite with 6 m bentonite seal at surface                   | pea gravel with 4.6 m bentonite seal at surface                         | pea gravel with 4.9 m bentonite seal at surface                         | pea gravel with 4.6 m bentonite seal at surface                                           |  |
| Monitoring Date                |                                                                         | Water Level El                                                          | evation (masl)                                                          |                                                                                           |  |
| September 17, 2012             | 71.21                                                                   | 72.35                                                                   | 71.37                                                                   | -                                                                                         |  |
| January 29, 2013               | 70.99                                                                   | 72.08                                                                   | 71.15                                                                   | -                                                                                         |  |
| February 18, 2013              | -                                                                       | 72.25                                                                   | 71.3                                                                    | -                                                                                         |  |
| November 28, 2013              | 70.97                                                                   | 72.12                                                                   | 71.18                                                                   | 73.05                                                                                     |  |





Client: Cowichan Valley Regional District

File No.: 17-971-18

E-File: cwp\_17-971-18\_tbl\_2012-9(Sept)-17 to 2013-11(Nov)-28 Precip and WLs.xls

## **COWICHAN VALLEY REGIONAL DISTRICT** FISHER ROAD REGIONAL GROUNDWATER INVESTIGATION - GROUNDWATER LEVELS

**FIGURE 2** 





| SAMPLE ID (Well)                                  |                   |                    | MW              | 12-1                  |                   |                       |                   |                      | MW                | 12-2                |                  |                       |                           |                     | MW                | 12-3                  |                  |                       | MW                        |
|---------------------------------------------------|-------------------|--------------------|-----------------|-----------------------|-------------------|-----------------------|-------------------|----------------------|-------------------|---------------------|------------------|-----------------------|---------------------------|---------------------|-------------------|-----------------------|------------------|-----------------------|---------------------------|
| SAMPLE DATE                                       | Septembe          | r 17, 2012         | January         | 29, 2013              | Novembe           | r 28, 2013            | Septembe          | r 17, 2012           | January           | 29, 2013            | Novembe          | r 28, 2013            | Septembe                  | r 17, 2012          | February          | 18, 2013              | Novembe          | er 28, 2013           | Novembe                   |
| WELL PREPARATION                                  | Pur               | ged                | Pur             | ged                   | Pur               | ged                   | Pur               | ged                  | Pu                | ged                 | Pur              | ged                   | Pur                       | ged                 | Pur               | rged                  | Pur              | rged                  | Pu                        |
| LABORATORY                                        | Max               | xam                | AG              | GAT                   | Max               | xam                   | Max               | xam                  | AG                | GAT                 | Max              | xam                   | Max                       | xam                 | AG                | GAT                   | Max              | xam                   | Ma                        |
| SAMPLED BY                                        | PJW /             | CWP                |                 | /RDM                  | CWF               | /TJS                  | PJW /             |                      |                   | /RDM                | CWF              |                       | PJW /                     |                     |                   | P/RDM                 |                  | P/TJS                 | CW                        |
| SAMPLE PREP.                                      | TOTAL             | DISS               | TOTAL           | DISS                  | TOTAL             | DISS                  | TOTAL             | DISS                 | TOTAL             | DISS                | TOTAL            | DISS                  | TOTAL                     | DISS                | TOTAL             | DISS                  | TOTAL            | DISS                  | TOTAL                     |
| pH, Field                                         | 6.95              |                    | 7.28            |                       | 7.57              |                       | 6.67              |                      | 6.78              |                     | 7.03             |                       | 6.9                       |                     | 6.97              |                       | 6.95             |                       | 7.14                      |
| pH, Laboratory                                    | 7.5               |                    | 7.6             |                       | 7.7               |                       | 7.2               |                      | 7.35              |                     | 7.7              |                       | 7.6                       |                     | 7.15              |                       | 7.7              |                       | 7.5                       |
| Conductivity, Field                               | 258               |                    | 428             |                       | 447               |                       | 1024              |                      | 1073              |                     | 1135             |                       | 639                       |                     | 713               |                       | 909              |                       | 599                       |
| Conductivity, Laboratory<br>True Colour           | 459<br>9          |                    | 445             |                       | 445<br>5          |                       | 1100              |                      | 1140              |                     | 1140<br><5       |                       | 681<br>7                  |                     | 712               |                       | 939<br>7         |                       | 435<br>5                  |
| Turbidity                                         | 9<br>6000         |                    |                 |                       | 2000              |                       | 9<br>1200         |                      |                   |                     | <5<br>110        |                       | 7<br>1300                 |                     |                   |                       |                  | 60.0                  | 5<br>600                  |
| Hardness CaCO <sub>3</sub> (mg/L) ♥               | 0000              | 183                |                 | 172                   | 2000              | 183                   | 1200              | 480                  |                   | 482                 | 492              | 497                   | 1300                      | 257                 |                   | 280                   | 385              | 405                   | 119                       |
| Total Dissolved Solids                            |                   | 318                |                 | 172                   | 204               | 293                   |                   | 814                  |                   | 444                 | 432              | 780                   |                           | 457                 |                   | 329                   | 505              | <u>591</u>            | 115                       |
| Total Alkalinity CaCO <sub>3</sub>                | 61.9              | 0.0                | 63              |                       |                   | 70.6                  | 77                | <u></u>              | 80                |                     | 79.2             |                       | 92.6                      |                     | 106               | 020                   | 82.8             | <u></u>               | 66.5                      |
| Bicarbonate Alkalinity HCO <sub>3</sub>           | 75.5              |                    | 63              |                       |                   | 86.1                  | 93.9              |                      | 80                |                     | 96.6             |                       | 113                       |                     | 106               |                       | 101              |                       | 81.2                      |
| Carbonate Alkalinity $CO_3$                       | <0.5              |                    | <1              |                       |                   | <0.5                  | <0.5              |                      | <1                |                     | <0.5             |                       | <0.5                      |                     | <1                |                       | <0.5             |                       | <0.5                      |
| Hydroxide Alkalinity OH                           | <0.5              |                    | <1              |                       |                   | <0.5                  | <0.5              |                      | <1                |                     | <0.5             |                       | <0.5                      |                     | <1                |                       | < 0.5            |                       | <0.5                      |
| Fluoride F (dissolved)                            |                   | 0.1                |                 | 0.07                  |                   | 0.055                 |                   | 0.067                |                   | 0.03                |                  | 0.033                 |                           | 0.084               |                   | 0.13                  |                  | 0.039                 |                           |
| Chloride CI (dissolved)                           |                   | 31.5               |                 | 29.2                  |                   | 26                    |                   | 36                   |                   | 35                  |                  | 38                    |                           | 69.5                |                   | 114                   |                  | 180                   |                           |
| Sulphate SO <sub>4</sub> (dissolved)              |                   | 17.9               |                 | 12.3                  |                   | 19.3                  |                   | 93.7                 |                   | 89.4                |                  | 93.0                  |                           | 47.9                |                   | 22.6                  |                  | 28.2                  |                           |
| Biological Oxygen Demand                          |                   |                    | <4              |                       |                   |                       |                   |                      | <4                |                     |                  |                       |                           |                     |                   |                       |                  |                       |                           |
| Caffeine (ug/L)                                   |                   |                    |                 |                       |                   |                       |                   |                      |                   |                     |                  |                       |                           |                     |                   |                       |                  |                       |                           |
| Caffeine                                          | <1                |                    |                 |                       |                   |                       | <1                |                      |                   |                     |                  |                       | <1                        |                     |                   |                       |                  |                       |                           |
| Nitrogen (mg/L)                                   |                   |                    |                 |                       |                   |                       |                   |                      |                   |                     |                  |                       |                           |                     |                   |                       |                  |                       |                           |
| Ammonia                                           | 0.11              |                    | <0.01           |                       | 0.053             |                       | 0.041             |                      | <0.01             |                     | 0.019            |                       | 0.057                     |                     | 0.02              |                       | 0.028            |                       | 0.039                     |
| Total Kjeldahl Nitrogen                           | 5                 |                    | 4               | 00.7                  | <1.0              |                       | <2                | 00.4                 | <1                | 00.5                | <2.0             | 047                   | <2                        | 45.0                | 2.5               | 40.0                  | <0.40            | 40.0                  | 0.211                     |
| Nitrate (as N)                                    |                   | <u>28</u><br>0.075 |                 | <u>23.7</u><br><0.005 |                   | <u>23.2</u><br>0.0060 |                   | <u>98.1</u><br>0.33  |                   | <u>92.5</u><br>0.04 |                  | <u>91.7</u><br>0.0211 |                           | <u>15.3</u><br><0.1 |                   | <u>16.3</u><br><0.005 |                  | <u>16.9</u><br>0.0101 |                           |
| Nitrite (as N)<br>Nitrate plus Nitrite (as N)     |                   | 0.075<br><u>28</u> |                 | <0.005<br><u>23.7</u> |                   | <u>23.2</u>           |                   | 98.5                 |                   | 92.5                |                  | <u>91.7</u>           |                           | <0.1<br><u>15.3</u> |                   | <0.005<br><u>16.3</u> |                  | <u>16.9</u>           |                           |
| Total Nitrogen                                    | 33.1              | 20                 | 26              | 23.1                  | 22.8              | 23.2                  | 92.4              | 50.5                 | 99.4              | 52.5                |                  | 84.7                  | 13.9                      | 13.3                | 17.9              | 10.5                  |                  | 17.0                  | 0.495                     |
| Nitrate Isotopes ( <sup>0</sup> / <sub>00</sub> ) | 00.1              |                    | 20              |                       | 22.0              |                       | 02.4              |                      | 00.4              |                     |                  | 04.1                  | 10.0                      |                     | 17.0              |                       |                  | 11.0                  | 0.400                     |
|                                                   |                   |                    |                 |                       |                   |                       |                   |                      |                   |                     |                  |                       |                           |                     |                   |                       |                  |                       |                           |
| <sup>15</sup> N                                   | 9.0 / 9.2         |                    | 7.8             |                       | 8.4               |                       | 4.7 / 4.4         |                      | 4.3               |                     | 4.9              |                       | 10.6 / 10.9               |                     | 13.0              |                       | 12.3             |                       | 3.3                       |
| <sup>18</sup> O                                   | 3.6 / 4.2         |                    | 4.2             |                       | 5.9               |                       | 20.3              |                      | 22                |                     | 23.7             |                       | 3.2                       |                     | -1.0              |                       | 3.7              |                       | 4.6                       |
| Metals (ug/L)<br>Aluminum Al                      | 22200****         | 8.7                | 21200****       | 78                    | 17400****         | 21.7                  | 33600****         | 11                   | 24100****         | <1                  | 1590****         | 11.5                  | 4350****                  | 25.1                | 17400****         | 7                     | 916****          | 12.7                  | 5250****                  |
| Antimony Sb                                       | < 0.50            | <0.50              | <0.05           | <0.05                 | <0.50             | <0.50                 | <0.50             | < 0.50               | <0.05             | <0.05               | < 0.50           | < 0.50                | <0.50                     | <0.50               | 0.24              | 0.05                  | < 0.50           | < 0.50                | <0.50                     |
| Arsenic As                                        | 4.28              | 0.4                | 8.2             | 0.4                   | 3.02              | 0.32                  | 3.64              | 0.19                 | 7.2               | 0.2                 | 1.16             | 0.21                  | 3.49                      | 0.48                | 9.2               | 0.03                  | 1.11             | 0.33                  | 1.71                      |
| Barium Ba                                         | 580               | 22.1               | 159             | 15.2                  | 277               | 13.3                  | 479               | 36.8                 | 199               | 29.4                | 51.7             | 30.7                  | 223                       | 49.9                | 289               | 36.9                  | 51.2             | 40.8                  | 115                       |
| Beryllium Be                                      | 1.06              | <0.10              | 0.96            | 0.01                  | 1.23              | <0.10                 | 1.04              | <0.10                | 0.65              | < 0.01              | <0.10            | <0.10                 | 1                         | <0.10               | 2.06              | < 0.01                | 0.13             | <0.10                 | 1.09                      |
| Bismuth Bi                                        | <1.0              | <1.0               |                 |                       | <1.0              | <1.0                  | <1.0              | <1.0                 |                   |                     | <1.0             | <1.0                  | <1.0                      | <1.0                |                   |                       | <1.0             | <1.0                  | <1.0                      |
| Boron B                                           | <50               | <50                | 2               | 2                     | <50               | <50                   | <50               | <50                  | 29                | 29                  | <50              | <50                   | <50                       | <50                 | 21                | 6                     | <50              | <50                   | <50                       |
| Cadmium Cd                                        | 1.24              | 0.166              | 0.06            | <0.01                 | 0.530             | 0.219                 | 1.2               | 0.419                | 0.48              | 0.4                 | 0.368            | 0.389                 | 1.05                      | 0.148               | 1.14              | 0.15                  | 0.272            | 0.161                 | 0.294                     |
| Chromium Cr                                       | <u>143</u> ****   | <1.0               | <u>63</u> ****  | 1.2                   | <u>79.4</u> ****  | <1.0                  | <u>95.9</u> ****  | <1.0                 | <u>59.1</u> ****  | 0.7                 | 13.1             | <1.0                  | 30.8                      | <1.0                | <u>56.8</u> ****  | 0.9                   | 5.8              | 1.1                   | 17.8                      |
| Cobalt Co                                         | 90.6              | 2.49               | 27.2            | 0.92                  | 45.7              | 0.84                  | 67.7              | 5.4                  | 28.2              | 3.9                 | 5.90             | 3.29                  | 30                        | 2.9                 | 59.8              | 0.58                  | 2.79             | <0.50                 | 17.8                      |
| Copper Cu                                         | 127               | 10.8               | 53.8            | 6.6                   | 76.6              | 3.62                  | 147               | 31.4                 | 78.5              | 34.9                | 37.4             | 35.4                  | 30.6                      | 5.95                | 54.6              | 5.5                   | 4.43             | 2.10                  | 24.5                      |
| Iron Fe                                           | <u>57600</u> **** | 22.8               | 47900****       | 16                    | <u>33600</u> **** | 27.9                  | <u>57200</u> **** | 120                  | <u>42400</u> **** | 90                  | 4180****         | 101                   | <u>11600</u> ****         | 61.5                | <u>29500</u> **** | 20                    | <u>1720</u> **** | <5.0                  | <u>12900</u> ****         |
| Lead Pb                                           | <u>11.4</u> ****  | 0.26               | 6.48            | 0.79                  | 11.7              | < 0.20                | <u>12.1</u> ****  | <0.20                | 4.7               | 0.02                | 1.04             | < 0.20                | 8.52                      | <0.20               | 14.9              | 0.13                  | 1.07             | < 0.20                | 7.70                      |
| Lithium Li<br>Manganoso Mn                        | 4760****          | 244                | 70.4****        | 40                    | 040****           | <5.0                  | 4000****          | 554                  | 600****           | 04                  | 04 7****         | <5.0                  | 75 4****                  | 105                 | 4450****          |                       | E7 C****         | <5.0                  | 000****                   |
| Manganese Mn<br>Marguny, Ha                       | <u>1760</u> ****  | 344<br><0.050      | <u>704</u> **** | 43                    | <u>919</u> ****   | 19.6                  | <u>1990</u> ****  | <u>554</u><br><0.050 | <u>696</u> ****   | 94                  | <u>84.7</u> **** | 16.4                  | <u>754</u> ****<br><0.050 | 185<br><0.050       | <u>1150</u> ****  | 22<br>0.033           | <u>57.6</u> **** | 3.2                   | <u>988</u> ****<br><0.010 |
| Mercury Hg<br>Molybdenum Mo                       | <0.050<br>10.6    | <0.050<br>16.3     | 0.059<br>4.5    | 0.007<br>1.47         | <0.010<br>2.3     | 1.8                   | <0.050<br>5.2     | <0.050<br>6          | 0.127<br><0.1     | 0.011<br>0.91       | <0.010<br><1.0   | <1.0                  | <0.050<br>3.8             | <0.050<br>3.9       | 0.15<br>5.9       | 1.31                  | <0.010<br><1.0   | <1.0                  | <0.010                    |
| Nickel Ni                                         | 10.6              | 7.8                | 4.5<br>54.5     | 3.7                   | 2.3<br>57.4       | 1.8                   | 5.2<br>196        | 6<br>80.7            | <0.1<br>126       | 73.6                | <1.0<br>80.3     | <1.0<br>77.4          | 3.8<br>46.3               | 3.9<br>14.1         | 5.9<br>80.4       | 1.31                  | <1.0<br>9.3      | <1.0<br>3.7           | 7.9<br>28.2               |
| Selenium Se                                       | 0.35              | 0.31               | 1.9             | 0.4                   | 0.11              | <0.10                 | 0.33              | 0.21                 | 2.4               | 0.6                 | 0.16             | 0.18                  | 40.3<br>0.36              | 0.5                 | 1.4               | 0.1                   | 9.3<br><0.10     | 0.13                  | 0.31                      |
| Silicon SiO <sub>2</sub>                          | 31200             | 11400              |                 |                       | 33700             | 11900                 | 45800             | 13200                | 1                 |                     | 17300            | 13300                 | 16600                     | 12400               |                   |                       | 15200            | 12600                 | 18500                     |
| Silver Ag                                         | 0.113             | <0.020             | 0.05            | <0.01                 | 0.046             | <0.020                | 0.099             | <0.020               | 0.05              | <0.01               | <0.020           | <0.020                | <0.020                    | <0.020              | <0.01             | <0.01                 | < 0.020          | <0.020                | 0.023                     |
| Strontium Sr                                      | 291               | 158                |                 |                       | 264               | 159                   | 645               | 466                  |                   |                     | 513              | 491                   | 333                       | 290                 |                   |                       | 361              | 361                   | 163                       |
| Thallium TI                                       | 0.204             | <0.050             | <0.01           | <0.002                | 0.126             | <0.050                | 0.099             | <0.050               | <0.01             | <0.002              | <0.050           | <0.050                | 0.128                     | <0.050              | 0.26              | 0.025                 | 0.051            | <0.050                | 0.063                     |
| Tin Sn                                            | <5.0              | <5.0               |                 |                       | <5.0              | <5.0                  | <5.0              | <5.0                 | 1                 |                     | <5.0             | <5.0                  | <5.0                      | <5.0                |                   |                       | <5.0             | <5.0                  | <5.0                      |
| Titanium Ti                                       | 45                | <5.0               | 1010            | 51.6                  | 54.4              | <5.0                  | 159               | <5.0                 | 1700              | 153                 | 76.4             | <5.0                  | 29.2                      | <5.0                | 478               | 82.3                  | 39.1             | <5.0                  | 42.5                      |
| Uranium U                                         | 2.33              | 0.45               | 1.3             | 0.31                  | 3.22              | 0.47                  | 1.89              | 0.46                 | 0.78              | 0.17                | 0.24             | 0.15                  | 3.67                      | 1.76                | 3.45              | 0.84                  | 0.45             | 0.25                  | 1.65                      |
| Vanadium V                                        | 102               | <5.0               | 73              | 1.2                   | 75.1              | <5.0                  | 135               | <5.0                 | 98.8              | 0.9                 | 12.7             | <5.0                  | 31.3                      | <5.0                | 59.8              | 0.8                   | <5.0             | <5.0                  | 24.1                      |
| Zinc Zn                                           | 1650              | 17                 | 179             | 47                    | 278               | 13.1                  | 189               | 8.1                  | 72                | 8                   | 11.4             | 8.4                   | 41.8                      | 7.1                 | 374               | 16                    | 8.9              | 6.9                   | 34.6                      |
| Zirconium Zr                                      | < 0.50            | < 0.50             | 50.0            | 20.0                  | < 0.50            | < 0.50                | 1.88              | <0.50                | 105               | 440                 | 1.27             | < 0.50                | <0.50                     | < 0.50              | 01.1              | 05.4                  | < 0.50           | < 0.50                | 0.73                      |
| Calcium Ca (mg/L) ♥                               | 58<br>32.3        | 41.5               | 50.2<br>33.2    | 36.9                  | 51.3              | 39.4                  | 136               | 114<br>47.2          | 125<br>61.3       | 112                 | 115              | 116                   | 67.4                      | 59.1<br>26.7        | 91.4<br>42        | 65.1                  | 87.7             | 89.6                  | 30.2                      |
| Magnesium Mg<br>Potassium K                       | 32.3<br>2.58      | 19.3<br>1.52       | 33.Z            | 19.4<br>1.04          | 30.5<br>1.82      | 20.5<br>1.06          | 64.2<br>3.48      | 47.2<br>2.13         | 01.3              | 49.2<br>1.67        | 49.9<br>1.63     | 50.1<br>1.62          | 29.5<br>1.93              | 26.7<br>1.64        | 42                | 28.5<br>1.44          | 40.4<br>1.47     | 44.0<br>1.45          | 10.5<br>1.61              |
| Sodium Na                                         | 2.58<br>14.6      | 1.52<br>14.1       | 14.3            | 1.04                  | 1.82              | 1.06                  | 3.48<br>18.5      | 2.13                 | 17.8              | 1.67                | 1.63             | 1.62                  | 1.93<br>25.9              | 1.64<br>26.9        | 20.1              | 1.44                  | 1.47             | 1.45                  | 55.5                      |
| Sulphur S                                         | 3.1               | 5.4                | 14.0            | 12.1                  | 6.2               | 6.7                   | 25                | 30.5                 | 11.0              | 10.9                | 28.1             | 30.0                  | 25.9<br>14.5              | 26.9<br>15.5        | 20.1              | 11.1                  | 14.7             | 10.0                  | 37.1                      |
|                                                   |                   | U.T                | 1               |                       |                   | 0.1                   | 20                | 00.0                 | 1                 | 1                   | 20.1             | 00.0                  | 1-1.0                     | 10.0                | 1                 | 1                     | 10.1             | 10.1                  | 01.1                      |

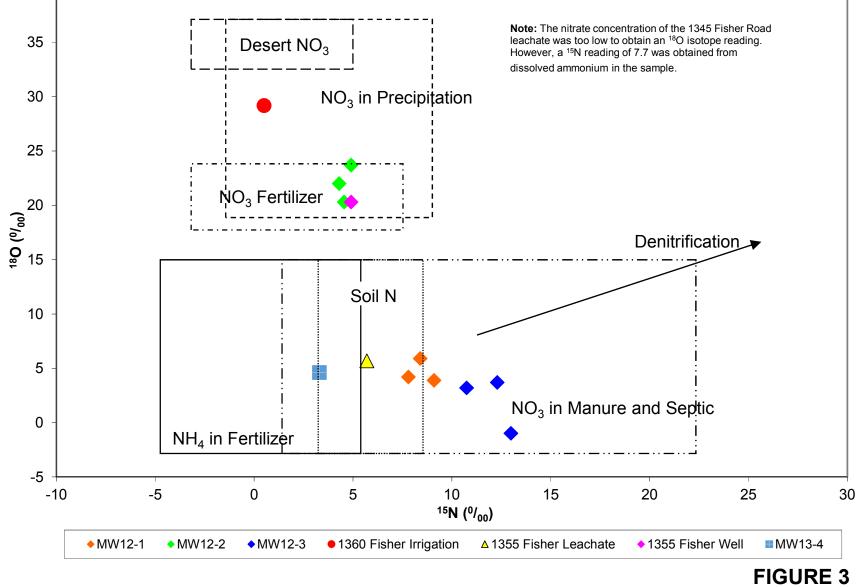
See following page for the table legend and explanatory notes.

## TABLE 2: FISHER ROAD MONITORING WELL SAMPLING DATA

| MW            | -             | Guidelines for           | British Columbia<br>Contaminated Sites |
|---------------|---------------|--------------------------|----------------------------------------|
| Novembe       | -             | Canadian Drinking        | Regulation Numerical                   |
| Pun<br>Max    |               | Water Quality<br>(GCDWQ) | Standards (CSR)                        |
| CWP           |               | (000110)                 |                                        |
| TOTAL         | DISS          |                          | Drinking Water                         |
| 7.14          |               | 6.5-8.5                  |                                        |
| 7.5           |               | 6.5-8.5                  |                                        |
| 599<br>435    |               |                          |                                        |
| 433<br>5      |               | ≤15 <sup>H</sup>         |                                        |
| 600           |               | ≤1**                     |                                        |
| 119           | 80.1          |                          |                                        |
|               | 314           | 500 <sup>H</sup>         |                                        |
| 66.5          |               |                          |                                        |
| 81.2<br><0.5  |               |                          |                                        |
| <0.5<br><0.5  |               |                          |                                        |
| 0.0           | 0.140         | 1.5 <sup>H</sup>         | 1.5                                    |
|               | 23            | ≤250 <sup>H</sup>        | 250                                    |
|               | 109           | ≤500 <sup>H</sup>        | 500                                    |
|               |               |                          |                                        |
|               |               |                          |                                        |
| 0.039         |               |                          |                                        |
| 0.211         | 0.252         | 10                       | 10                                     |
|               | 0.232         | 10                       | 3.2                                    |
|               | 0.285         | 10                       | 10                                     |
| 0.495         |               |                          |                                        |
|               |               |                          |                                        |
| 3.3           |               |                          |                                        |
| 4.6           |               |                          |                                        |
| 5250****      | 14.8          | 200***                   | 9,500                                  |
| <0.50         | <0.50         | 6                        | 6                                      |
| 1.71          | 0.24          | 10                       | 10                                     |
| 115<br>1.09   | 16.8<br><0.10 | 1,000                    | 1,000                                  |
| <1.0          | <1.0          |                          |                                        |
| <50           | <50           | 5,000                    | 5,000                                  |
| 0.294         | 0.209         | 5                        | 5                                      |
| 17.8<br>17.8  | <1.0<br>3.10  | 50 (Cr VI)               | 50                                     |
| 24.5          | 2.48          | 1,000 <sup>HH</sup>      | 1,000                                  |
| 2900****      | 8.6           | 300 <sup>H</sup>         | 6,500                                  |
| 7.70          | <0.20         | 10                       | 10                                     |
|               | <5.0          | 50 <sup>H</sup>          | 550                                    |
| 988****       | 409           | 50 <sup>H</sup>          | 550                                    |
| <0.010<br>7.9 | 11.2          | 1<br>250                 | 1<br>250                               |
| 28.2          | 7.0           | 200                      | 200                                    |
| 0.31          | 0.29          | 10                       | 10                                     |
| 18500         | 9910          |                          |                                        |
| 0.023<br>163  | <0.020        |                          |                                        |
| 0.063         | 108<br><0.050 |                          |                                        |
| <5.0          | <5.0          |                          |                                        |
| 42.5          | <5.0          |                          |                                        |
| 1.65          | 0.46          | 20                       | 20                                     |
| 24.1<br>34.6  | <5.0<br>5.6   | 5,000 <sup>H</sup>       | 5,000                                  |
| 34.0<br>0.73  | 5.6<br><0.50  | 3,000                    | 5,000                                  |
| 30.2          | 21.4          |                          |                                        |
| 10.5          | 6.45          |                          | 100                                    |
| 1.61          | 1.19          |                          |                                        |
| 55.5<br>37.1  | 47.4          | 200*** <sup>H</sup>      | 200                                    |
| 37.1          | 28.6          |                          |                                        |




#### **TABLE 2: EXPLANATORY NOTES**


All results expressed as milligrams per litre (mg/L)(ppm) or micrograms per litre (ug/L)(ppb) as noted except pH which is in pH units, conductivity which is in  $\mu$ S/cm (microsiemens per centimetre), and turbidity which is in NTU (nephelometric turbidity units). Isotopes are measured in  $^{0}/_{00}$ , which is per mille (per thousand).

The GCDWQ for organic and inorganic parameters are expressed as total concentrations, while the BC CSR standards are expressed as dissolved concentrations for inorganic parameters and total concentrations for organic parameters.

- < Less than the detection limit (shown or various).
- \* Limit is for dissolved aluminum or magnesium
- \*\* GCDWQ standard inapplicable to untreated groundwater as they are intended to be applied to treated or municipal water supplied water.
- \*\*\* Alert level of 20 mg/L for persons on sodium restricted diet.
- It is suspected that the total metals results shown were impacted by the leaching of naturally occuring, silt-derived metals and are not representative of the actual groundwater conditions or indicative of concentrations anticipated to be found within a drinking water well.
- <sup>H</sup> Aesthetic objective.
- 7.32 Bold underline yellow indicates exceeds the federal Guidelines for Canadian Drinking Water Quality (total concentrations)
- 7.32 Bold underline tan indicates exceeds the B.C. Contaminated Sites Regulation Schedule 6 Numercial Water Standards (dissolved)
- 7.32 Bold underline rose indicates level exceeds both the GCDWQ and CSR



# FISHER RD NO<sub>3</sub> ISOTOPE DATA





Your Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Your C.O.C. #: V010812

#### Attention: Chad Petersmeyer

Thurber Engineering Ltd. 100-4396 West Saanich Victoria, BC Canada V8Z 3E9

Report Date: 2013/12/06

## CERTIFICATE OF ANALYSIS

#### MAXXAM JOB #: B3B0786 Received: 2013/11/29, 09:25

Sample Matrix: Water # Samples Received: 4

|                                            |          | Date       | Date                       |                    |
|--------------------------------------------|----------|------------|----------------------------|--------------------|
| Analyses                                   | Quantity | Extracted  | Analyzed Laboratory Method | Analytical Method  |
| Alkalinity - Water (1)                     | 4        | 2013/12/03 | 2013/12/03 BBY6SOP-00026   | SM2320B            |
| Chloride by Automated Colourimetry         | 1        | N/A        | 2013/11/30 BBY6SOP-00011   | SM-4500-CI-        |
| Chloride by Automated Colourimetry         | 3        | N/A        | 2013/12/02 BBY6SOP-00011   | SM-4500-CI-        |
| Colour (True) (1)                          | 4        | N/A        | 2013/11/29 VIC SOP-00010   | Based on SM-2120B  |
| Conductance - water (1)                    | 4        | N/A        | 2013/12/03 BBY6SOP-00026   | SM-2510B           |
| Fluoride                                   | 4        | N/A        | 2013/12/02 BBY6SOP-00012   | SM - 4500 F C      |
| Hardness Total (calculated as CaCO3)       | 4        | N/A        | 2013/12/05 BBY7SOP-00002   | EPA 6020A          |
| Hardness (calculated as CaCO3)             | 4        | N/A        | 2013/12/04 BBY7SOP-00002   | EPA 6020A          |
| Mercury (Dissolved) by CVAF                | 4        | N/A        | 2013/12/05 BBY7SOP-00015   | EPA 245.7          |
| Mercury (Total) by CVAF                    | 4        | 2013/12/05 | 2013/12/05 BBY7SOP-00015   | EPA 245.7          |
| Na, K, Ca, Mg, S by CRC ICPMS (diss.)      | 4        | N/A        | 2013/12/04 BBY7SOP-00002   | EPA 6020A          |
| Elements by CRC ICPMS (dissolved)          | 4        | N/A        | 2013/12/03 BBY7SOP-00002   | EPA 6020A          |
| Na, K, Ca, Mg, S by CRC ICPMS (total)      | 4        | N/A        | 2013/12/05 BBY7SOP-00002   | EPA 6020A          |
| Elements by CRC ICPMS (total)              | 4        | N/A        | 2013/12/05 BBY7SOP-00002   | EPA 6020A          |
| Nitrogen (Total)                           | 4        | 2013/12/02 | 2013/12/02 BBY6SOP-00016   | SM-4500N C         |
| Ammonia-N (Preserved)                      | 4        | N/A        | 2013/12/02 BBY6SOP-00009   | SM-4500NH3G        |
| Nitrate + Nitrite (N)                      | 4        | N/A        | 2013/11/30 BBY6SOP-00010   | SM 4500NO3-I       |
| Nitrite (N) by CFA                         | 4        | N/A        | 2013/11/30 BBY6SOP-00010   | EPA 353.2          |
| Nitrogen - Nitrate (as N)                  | 4        | N/A        | 2013/11/30 BBY6SOP-00010   | SM 4500NO3-I       |
| Filter and HNO3 Preserve for Metals        | 4        | N/A        | 2013/11/29 BBY6WI-00001    | EPA 200.2          |
| pH Water (1,2                              | 4        | N/A        | 2013/12/04 BBY6SOP-00026   | SM-4500H+B         |
| Sulphate by Automated Colourimetry         | 2        | N/A        | 2013/11/30 BBY6SOP-00017   | SM4500-SO42- E     |
| Sulphate by Automated Colourimetry         | 2        | N/A        | 2013/12/02 BBY6SOP-00017   | SM4500-SO42- E     |
| Total Dissolved Solids (Filt. Residue) (1) | 3        | N/A        | 2013/11/29 VIC SOP-00008   | Based on SM 2540C  |
| Total Dissolved Solids (Filt. Residue) (1) | 1        | N/A        | 2013/12/05 VIC SOP-00008   | Based on SM 2540C  |
| TKN (Calc. TN, N/N) total                  | 4        | N/A        | 2013/12/03 BBY6SOP-00022   | SM 4500N-C         |
| Turbidity (1)                              | 3        | N/A        | 2013/12/03 VIC SOP-00011   | Based on SM - 2130 |
| Turbidity (1)                              | 1        | N/A        | 2013/12/05 VIC SOP-00011   | Based on SM - 2130 |

\* Results relate only to the items tested.

(1) This test was performed by Maxxam Victoria

(2) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.



Success Through Science®

Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Debbie Nordbruget, Project Manager Email: DNordbruget@maxxam.ca Phone# (250) 385-6112

\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2



Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                            |           |            | IF1749           |        |          |
|--------------------------------------|-----------|------------|------------------|--------|----------|
| Sampling Date                        |           |            | 2013/11/28 10:20 |        |          |
|                                      | UNITS     | Criteria A | MW13-4           | RDL    | QC Batch |
| ANIONS                               |           |            |                  |        |          |
| Nitrite (N)                          | mg/L      |            | 0.0331           | 0.0050 | 7304360  |
| Calculated Parameters                |           |            |                  |        |          |
| Filter and HNO3 Preservation         | N/A       |            | FIELD            | N/A    | ONSITE   |
| Total Hardness (CaCO3)               | mg/L      |            | 119              | 0.50   | 7301891  |
| Nitrate (N)                          | mg/L      |            | 0.252            | 0.020  | 7301810  |
| Misc. Inorganics                     |           |            |                  |        | •        |
| Fluoride (F)                         | mg/L      |            | 0.140            | 0.010  | 7305979  |
| Alkalinity (Total as CaCO3)          | mg/L      |            | 66.5             | 0.5    | 7305978  |
| Alkalinity (PP as CaCO3)             | mg/L      |            | <0.5             | 0.5    | 7305978  |
| Bicarbonate (HCO3)                   | mg/L      |            | 81.2             | 0.5    | 7305978  |
| Carbonate (CO3)                      | mg/L      |            | <0.5             | 0.5    | 7305978  |
| Hydroxide (OH)                       | mg/L      |            | <0.5             | 0.5    | 7305978  |
| Anions                               |           |            | · · ·            |        | •        |
| Dissolved Sulphate (SO4)             | mg/L      | 500        | 109              | 0.50   | 7305834  |
| Dissolved Chloride (Cl)              | mg/L      | 250        | 23               | 0.50   | 7305833  |
| MISCELLANEOUS                        |           |            |                  |        |          |
| True Colour                          | Col. Unit | 15         | 5                | 5      | 7306560  |
| Nutrients                            |           |            |                  |        |          |
| Ammonia (N)                          | mg/L      |            | 0.039            | 0.0050 | 7305003  |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L      |            | 0.211            | 0.020  | 7301893  |
| Nitrate plus Nitrite (N)             | mg/L      |            | 0.285            | 0.020  | 7304359  |
| Total Nitrogen (N)                   | mg/L      |            | 0.495            | 0.020  | 7305135  |
| Physical Properties                  |           |            |                  |        |          |
| Conductivity                         | uS/cm     |            | 435              | 1      | 7305976  |
| pH                                   | pH Units  | 6.5:8.5    | 7.5              |        | 7305910  |
| Physical Properties                  | ·         |            |                  |        |          |
| Total Dissolved Solids               | mg/L      | 500        | 314              | 10     | 7302224  |
| Turbidity                            | NTU       |            | 600              | 0.1    | 7309536  |

N/A = Not Applicable

RDL = Reportable Detection Limit



Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                            |           |            | IF1750     |        |          | IF1751     |        |          |
|--------------------------------------|-----------|------------|------------|--------|----------|------------|--------|----------|
| Sampling Date                        |           |            | 2013/11/28 |        |          | 2013/11/28 |        |          |
| 1 0                                  |           |            | 13:00      |        |          | 14:40      |        |          |
|                                      | UNITS     | Criteria A | MW12-2     | RDL    | QC Batch | MW12-1     | RDL    | QC Batch |
| ANIONS                               |           |            |            |        |          |            |        |          |
| Nitrite (N)                          | mg/L      |            | 0.0211     | 0.0050 | 7304360  | 0.0060     | 0.0050 | 7304360  |
| Calculated Parameters                |           |            |            |        |          |            |        |          |
| Filter and HNO3 Preservation         | N/A       |            | FIELD      | N/A    | ONSITE   | FIELD      | N/A    | ONSITE   |
| Total Hardness (CaCO3)               | mg/L      |            | 492        | 0.50   | 7301891  | 254        | 0.50   | 7301891  |
| Nitrate (N)                          | mg/L      |            | 91.7       | 2.0    | 7301810  | 23.2       | 0.40   | 7301810  |
| Misc. Inorganics                     |           |            |            |        |          |            |        |          |
| Fluoride (F)                         | mg/L      |            | 0.033      | 0.010  | 7305979  | 0.055      | 0.010  | 7305979  |
| Alkalinity (Total as CaCO3)          | mg/L      |            | 79.2       | 0.5    | 7305978  | 70.6       | 0.5    | 7305978  |
| Alkalinity (PP as CaCO3)             | mg/L      |            | <0.5       | 0.5    | 7305978  | <0.5       | 0.5    | 7305978  |
| Bicarbonate (HCO3)                   | mg/L      |            | 96.6       | 0.5    | 7305978  | 86.1       | 0.5    | 7305978  |
| Carbonate (CO3)                      | mg/L      |            | <0.5       | 0.5    | 7305978  | <0.5       | 0.5    | 7305978  |
| Hydroxide (OH)                       | mg/L      |            | <0.5       | 0.5    | 7305978  | <0.5       | 0.5    | 7305978  |
| Anions                               |           |            |            |        |          |            |        |          |
| Dissolved Sulphate (SO4)             | mg/L      | 500        | 93.0       | 0.50   | 7304313  | 19.3       | 0.50   | 7304313  |
| Dissolved Chloride (Cl)              | mg/L      | 250        | 38         | 0.50   | 7304312  | 26         | 0.50   | 7305833  |
| MISCELLANEOUS                        |           |            |            |        |          |            |        |          |
| True Colour                          | Col. Unit | 15         | <5         | 5      | 7306560  | 5          | 5      | 7306560  |
| Nutrients                            |           |            |            |        |          |            |        |          |
| Ammonia (N)                          | mg/L      |            | 0.019      | 0.0050 | 7305003  | 0.053      | 0.0050 | 7305003  |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L      |            | <2.0       | 2.0    | 7301893  | <1.0       | 1.0    | 7301893  |
| Nitrate plus Nitrite (N)             | mg/L      |            | 91.7       | 2.0    | 7304359  | 23.2       | 0.40   | 7304359  |
| Total Nitrogen (N)                   | mg/L      |            | 84.7       | 2.0    | 7305135  | 22.8       | 1.0    | 7305135  |
| Physical Properties                  |           |            |            |        |          |            |        |          |
| Conductivity                         | uS/cm     |            | 1140       | 1      | 7305976  | 445        | 1      | 7305976  |
| pH                                   | pH Units  | 6.5:8.5    | 7.7        |        | 7305910  | 7.7        |        | 7305910  |
| Physical Properties                  |           |            |            |        |          |            |        |          |
| Total Dissolved Solids               | mg/L      | 500        | 780        | 10     | 7302224  | 293        | 10     | 7302224  |
| Turbidity                            | NTU       |            | 110        | 0.1    | 7306766  | 2000       | 1      | 7306766  |

N/A = Not Applicable

RDL = Reportable Detection Limit



Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                            |           |            | IF1752           |        |          |
|--------------------------------------|-----------|------------|------------------|--------|----------|
| Sampling Date                        |           |            | 2013/11/28 16:20 |        |          |
|                                      | UNITS     | Criteria A | MW12-3           | RDL    | QC Batch |
| ANIONS                               |           |            |                  |        |          |
| Nitrite (N)                          | mg/L      |            | 0.0101           | 0.0050 | 7304360  |
| Calculated Parameters                |           |            |                  |        |          |
| Filter and HNO3 Preservation         | N/A       |            | FIELD            | N/A    | ONSITE   |
| Total Hardness (CaCO3)               | mg/L      |            | 385              | 0.50   | 7301891  |
| Nitrate (N)                          | mg/L      |            | 16.9             | 0.40   | 7301810  |
| Misc. Inorganics                     |           |            |                  |        |          |
| Fluoride (F)                         | mg/L      |            | 0.039            | 0.010  | 7305979  |
| Alkalinity (Total as CaCO3)          | mg/L      |            | 82.8             | 0.5    | 7305978  |
| Alkalinity (PP as CaCO3)             | mg/L      |            | <0.5             | 0.5    | 7305978  |
| Bicarbonate (HCO3)                   | mg/L      |            | 101              | 0.5    | 7305978  |
| Carbonate (CO3)                      | mg/L      |            | <0.5             | 0.5    | 7305978  |
| Hydroxide (OH)                       | mg/L      |            | <0.5             | 0.5    | 7305978  |
| Anions                               |           |            | •                |        |          |
| Dissolved Sulphate (SO4)             | mg/L      | 500        | 28.2             | 0.50   | 7305834  |
| Dissolved Chloride (Cl)              | mg/L      | 250        | 180              | 0.50   | 7305833  |
| MISCELLANEOUS                        |           |            | •                |        |          |
| True Colour                          | Col. Unit | 15         | 7                | 5      | 7306560  |
| Nutrients                            |           |            | · · ·            |        |          |
| Ammonia (N)                          | mg/L      |            | 0.028            | 0.0050 | 7305003  |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L      |            | <0.40            | 0.40   | 7301893  |
| Nitrate plus Nitrite (N)             | mg/L      |            | 16.9             | 0.40   | 7304359  |
| Total Nitrogen (N)                   | mg/L      |            | 17.0             | 0.20   | 7305135  |
| Physical Properties                  |           |            |                  |        |          |
| Conductivity                         | uS/cm     |            | 939              | 1      | 7305976  |
| pH                                   | pH Units  | 6.5:8.5    | 7.7              |        | 7305910  |
| Physical Properties                  |           |            |                  |        |          |
| Total Dissolved Solids               | mg/L      | 500        | 591              | 10     | 7308914  |
| Turbidity                            | NTU       |            | 60.0             | 0.1    | 7306766  |

N/A = Not Applicable

RDL = Reportable Detection Limit



Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

#### MERCURY BY COLD VAPOR (WATER)

| Maxxam ID          |       | IF1749           | IF1750           | IF1751           | IF1752           |       |          |
|--------------------|-------|------------------|------------------|------------------|------------------|-------|----------|
| Sampling Date      |       | 2013/11/28 10:20 | 2013/11/28 13:00 | 2013/11/28 14:40 | 2013/11/28 16:20 |       |          |
|                    | UNITS | MW13-4           | MW12-2           | MW12-1           | MW12-3           | RDL   | QC Batch |
| Elements           |       |                  |                  |                  |                  |       | _        |
| Total Mercury (Hg) | ug/L  | <0.010           | <0.010           | <0.010           | <0.010           | 0.010 | 7309228  |



Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

## ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

| Maxxam ID             |       |            | IF1749           | IF1750           | IF1751     | IF1752     |       |          |
|-----------------------|-------|------------|------------------|------------------|------------|------------|-------|----------|
| Sampling Date         |       |            | 2013/11/28 10:20 | 2013/11/28 13:00 | 2013/11/28 | 2013/11/28 |       |          |
|                       |       |            |                  |                  | 14:40      | 16:20      |       |          |
|                       | UNITS | Criteria A | MW13-4           | MW12-2           | MW12-1     | MW12-3     | RDL   | QC Batch |
| Total Metals by ICPMS |       |            |                  |                  |            |            |       |          |
| Total Aluminum (Al)   | ug/L  |            | 5250             | 1590             | 17400      | 916        | 3.0   | 7308597  |
| Total Antimony (Sb)   | ug/L  |            | <0.50            | <0.50            | <0.50      | <0.50      | 0.50  | 7308597  |
| Total Arsenic (As)    | ug/L  |            | 1.71             | 1.16             | 3.02       | 1.11       | 0.10  | 7308597  |
| Total Barium (Ba)     | ug/L  |            | 115              | 51.7             | 277        | 51.2       | 1.0   | 7308597  |
| Total Beryllium (Be)  | ug/L  |            | 1.09             | <0.10            | 1.23       | 0.13       | 0.10  | 7308597  |
| Total Bismuth (Bi)    | ug/L  |            | <1.0             | <1.0             | <1.0       | <1.0       | 1.0   | 7308597  |
| Total Boron (B)       | ug/L  |            | <50              | <50              | <50        | <50        | 50    | 7308597  |
| Total Cadmium (Cd)    | ug/L  |            | 0.294            | 0.368            | 0.530      | 0.272      | 0.010 | 7308597  |
| Total Chromium (Cr)   | ug/L  |            | 17.8             | 13.1             | 79.4       | 5.8        | 1.0   | 7308597  |
| Total Cobalt (Co)     | ug/L  |            | 17.8             | 5.90             | 45.7       | 2.79       | 0.50  | 7308597  |
| Total Copper (Cu)     | ug/L  | 1000       | 24.5             | 37.4             | 76.6       | 4.43       | 0.20  | 7308597  |
| Total Iron (Fe)       | ug/L  | 300        | 12900            | 4180             | 33600      | 1720       | 5.0   | 7308597  |
| Total Lead (Pb)       | ug/L  |            | 7.70             | 1.04             | 11.7       | 1.07       | 0.20  | 7308597  |
| Total Manganese (Mn)  | ug/L  | 50         | 988              | 84.7             | 919        | 57.6       | 1.0   | 7308597  |
| Total Molybdenum (Mo) | ug/L  |            | 7.9              | <1.0             | 2.3        | <1.0       | 1.0   | 7308597  |
| Total Nickel (Ni)     | ug/L  |            | 28.2             | 80.3             | 57.4       | 9.3        | 1.0   | 7308597  |
| Total Selenium (Se)   | ug/L  |            | 0.31             | 0.16             | 0.11       | <0.10      | 0.10  | 7308597  |
| Total Silicon (Si)    | ug/L  |            | 18500            | 17300            | 33700      | 15200      | 100   | 7308597  |
| Total Silver (Ag)     | ug/L  |            | 0.023            | <0.020           | 0.046      | <0.020     | 0.020 | 7308597  |
| Total Strontium (Sr)  | ug/L  |            | 163              | 513              | 264        | 361        | 1.0   | 7308597  |
| Total Thallium (TI)   | ug/L  |            | 0.063            | <0.050           | 0.126      | 0.051      | 0.050 | 7308597  |
| Total Tin (Sn)        | ug/L  |            | <5.0             | <5.0             | <5.0       | <5.0       | 5.0   | 7308597  |
| Total Titanium (Ti)   | ug/L  |            | 42.5             | 76.4             | 54.4       | 39.1       | 5.0   | 7308597  |
| Total Uranium (U)     | ug/L  |            | 1.65             | 0.24             | 3.22       | 0.45       | 0.10  | 7308597  |
| Total Vanadium (V)    | ug/L  |            | 24.1             | 12.7             | 75.1       | <5.0       | 5.0   | 7308597  |
| Total Zinc (Zn)       | ug/L  | 5000       | 34.6             | 11.4             | 278        | 8.9        | 5.0   | 7308597  |
| Total Zirconium (Zr)  | ug/L  |            | 0.73             | 1.27             | <0.50      | <0.50      | 0.50  | 7308597  |
| Total Calcium (Ca)    | mg/L  |            | 30.2             | 115              | 51.3       | 87.7       | 0.050 | 7302765  |
| Total Magnesium (Mg)  | mg/L  |            | 10.5             | 49.9             | 30.5       | 40.4       | 0.050 | 7302765  |
| Total Potassium (K)   | mg/L  |            | 1.61             | 1.63             | 1.82       | 1.47       | 0.050 | 7302765  |
| Total Sodium (Na)     | mg/L  | 200        | 55.5             | 16.2             | 11.6       | 14.7       | 0.050 | 7302765  |
| Total Sulphur (S)     | mg/L  |            | 37.1             | 28.1             | 6.2        | 10.1       | 3.0   | 7302765  |

RDL = Reportable Detection Limit



Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

## CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

| Maxxam ID                  |       |            | IF1749           | IF1750     | IF1751     | IF1752     |       |          |
|----------------------------|-------|------------|------------------|------------|------------|------------|-------|----------|
| Sampling Date              |       |            | 2013/11/28 10:20 | 2013/11/28 | 2013/11/28 | 2013/11/28 |       |          |
|                            |       |            |                  | 13:00      | 14:40      | 16:20      |       |          |
|                            | UNITS | Criteria A | MW13-4           | MW12-2     | MW12-1     | MW12-3     | RDL   | QC Batch |
| Misc. Inorganics           |       |            |                  |            |            |            |       |          |
| Dissolved Hardness (CaCO3) | mg/L  |            | 80.1             | 497        | 183        | 405        | 0.50  | 7301807  |
| Elements                   |       |            |                  |            |            |            |       |          |
| Dissolved Mercury (Hg)     | ug/L  |            | <0.010           | <0.010     | <0.010     | <0.010     | 0.010 | 7308740  |



Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

## CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

| Maxxam ID                 |       |            | IF1749           | IF1750     | IF1751     | IF1752     |       |          |
|---------------------------|-------|------------|------------------|------------|------------|------------|-------|----------|
| Sampling Date             |       |            | 2013/11/28 10:20 | 2013/11/28 | 2013/11/28 | 2013/11/28 |       |          |
|                           |       |            |                  | 13:00      | 14:40      | 16:20      |       |          |
|                           | UNITS | Criteria A | MW13-4           | MW12-2     | MW12-1     | MW12-3     | RDL   | QC Batch |
| Dissolved Metals by ICPMS |       |            | i                |            |            |            |       |          |
| Dissolved Aluminum (Al)   | ug/L  |            | 14.8             | 11.5       | 21.7       | 12.7       | 3.0   | 7306784  |
| Dissolved Antimony (Sb)   | ug/L  |            | <0.50            | <0.50      | <0.50      | <0.50      | 0.50  | 7306784  |
| Dissolved Arsenic (As)    | ug/L  |            | 0.24             | 0.21       | 0.32       | 0.33       | 0.10  | 7306784  |
| Dissolved Barium (Ba)     | ug/L  |            | 16.8             | 30.7       | 13.3       | 40.8       | 1.0   | 7306784  |
| Dissolved Beryllium (Be)  | ug/L  |            | <0.10            | <0.10      | <0.10      | <0.10      | 0.10  | 7306784  |
| Dissolved Bismuth (Bi)    | ug/L  |            | <1.0             | <1.0       | <1.0       | <1.0       | 1.0   | 7306784  |
| Dissolved Boron (B)       | ug/L  |            | <50              | <50        | <50        | <50        | 50    | 7306784  |
| Dissolved Cadmium (Cd)    | ug/L  |            | 0.209            | 0.389      | 0.219      | 0.161      | 0.010 | 7306784  |
| Dissolved Chromium (Cr)   | ug/L  |            | <1.0             | <1.0       | <1.0       | 1.1        | 1.0   | 7306784  |
| Dissolved Cobalt (Co)     | ug/L  |            | 3.10             | 3.29       | 0.84       | <0.50      | 0.50  | 7306784  |
| Dissolved Copper (Cu)     | ug/L  | 1000       | 2.48             | 35.4       | 3.62       | 2.10       | 0.20  | 7306784  |
| Dissolved Iron (Fe)       | ug/L  | 300        | 8.6              | 101        | 27.9       | <5.0       | 5.0   | 7306784  |
| Dissolved Lead (Pb)       | ug/L  |            | <0.20            | <0.20      | <0.20      | <0.20      | 0.20  | 7306784  |
| Dissolved Lithium (Li)    | ug/L  |            | <5.0             | <5.0       | <5.0       | <5.0       | 5.0   | 7306784  |
| Dissolved Manganese (Mn)  | ug/L  | 50         | 409              | 16.4       | 19.6       | 3.2        | 1.0   | 7306784  |
| Dissolved Molybdenum (Mo) | ug/L  |            | 11.2(1)          | <1.0       | 1.8        | <1.0       | 1.0   | 7306784  |
| Dissolved Nickel (Ni)     | ug/L  |            | 7.0              | 77.4       | 2.1        | 3.7        | 1.0   | 7306784  |
| Dissolved Selenium (Se)   | ug/L  |            | 0.29             | 0.18       | <0.10      | 0.13       | 0.10  | 7306784  |
| Dissolved Silicon (Si)    | ug/L  |            | 9910             | 13300      | 11900      | 12600      | 100   | 7306784  |
| Dissolved Silver (Ag)     | ug/L  |            | <0.020           | <0.020     | <0.020     | <0.020     | 0.020 | 7306784  |
| Dissolved Strontium (Sr)  | ug/L  |            | 108              | 491        | 159        | 361        | 1.0   | 7306784  |
| Dissolved Thallium (TI)   | ug/L  |            | <0.050           | <0.050     | <0.050     | <0.050     | 0.050 | 7306784  |
| Dissolved Tin (Sn)        | ug/L  |            | <5.0             | <5.0       | <5.0       | <5.0       | 5.0   | 7306784  |
| Dissolved Titanium (Ti)   | ug/L  |            | <5.0             | <5.0       | <5.0       | <5.0       | 5.0   | 7306784  |
| Dissolved Uranium (U)     | ug/L  |            | 0.46             | 0.15       | 0.47       | 0.25       | 0.10  | 7306784  |
| Dissolved Vanadium (V)    | ug/L  |            | <5.0             | <5.0       | <5.0       | <5.0       | 5.0   | 7306784  |
| Dissolved Zinc (Zn)       | ug/L  | 5000       | 5.6              | 8.4        | 13.1       | 6.9        | 5.0   | 7306784  |
| Dissolved Zirconium (Zr)  | ug/L  |            | <0.50            | <0.50      | <0.50      | <0.50      | 0.50  | 7306784  |
| Dissolved Calcium (Ca)    | mg/L  |            | 21.4             | 116        | 39.4       | 89.6       | 0.050 | 7301809  |
| Dissolved Magnesium (Mg)  | mg/L  |            | 6.45             | 50.1       | 20.5       | 44.0       | 0.050 | 7301809  |
| Dissolved Potassium (K)   | mg/L  |            | 1.19             | 1.62       | 1.06       | 1.45       | 0.050 | 7301809  |
| Dissolved Sodium (Na)     | mg/L  | 200        | 47.4             | 16.8       | 11.5       | 16.0       | 0.050 | 7301809  |
| Dissolved Sulphur (S)     | mg/L  |            | 28.6             | 30.0       | 6.7        | 10.1       | 3.0   | 7301809  |

RDL = Reportable Detection Limit

Criteria A: Guidelines for Canadian Drinking Water Quality - Aesthetic Objective.

(1) - Dissolved greater than total. Reanalysis yields similar results.



Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

| Package 1 | 6.7°C |
|-----------|-------|

Each temperature is the average of up to three cooler temperatures taken at receipt

General Comments



Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

#### QUALITY ASSURANCE REPORT

|          |                             |            | Matrix S   | Spike     | Spiked     | Blank     | Method Bla       | nk        | RI        | RPD       |  |
|----------|-----------------------------|------------|------------|-----------|------------|-----------|------------------|-----------|-----------|-----------|--|
| QC Batch | Parameter                   | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value            | UNITS     | Value (%) | QC Limits |  |
| 7302224  | Total Dissolved Solids      | 2013/11/29 |            |           | 108        | 80 - 120  | <10              | mg/L      | 0.5       | 20        |  |
| 7304312  | Dissolved Chloride (CI)     | 2013/11/30 | NC         | 80 - 120  | 107        | 80 - 120  | <0.50            | mg/L      | 2.5       | 20        |  |
| 7304313  | Dissolved Sulphate (SO4)    | 2013/11/30 | NC         | 80 - 120  | 107        | 80 - 120  | 0.55, RDL=0.50   | mg/L      | 0.5       | 20        |  |
| 7304359  | Nitrate plus Nitrite (N)    | 2013/11/30 | 108        | 80 - 120  | 105        | 80 - 120  | <0.020           | mg/L      | 2.1       | 25        |  |
| 7304360  | Nitrite (N)                 | 2013/11/30 | 104        | 80 - 120  | 99         | 80 - 120  | <0.0050          | mg/L      | 3.4       | 20        |  |
| 7305003  | Ammonia (N)                 | 2013/12/02 | NC         | 80 - 120  | 99         | 80 - 120  | <0.0050          | mg/L      | 5.1       | 20        |  |
| 7305135  | Total Nitrogen (N)          | 2013/12/02 | NC         | 80 - 120  | 104        | 80 - 120  | <0.020           | mg/L      | 0.04      | 20        |  |
| 7305833  | Dissolved Chloride (CI)     | 2013/12/02 | NC         | 80 - 120  | 102        | 80 - 120  | <0.50            | mg/L      | 1.4       | 20        |  |
| 7305834  | Dissolved Sulphate (SO4)    | 2013/12/02 | NC         | 80 - 120  | 101        | 80 - 120  | 0.68, RDL=0.50   | mg/L      | 0.9       | 20        |  |
| 7305976  | Conductivity                | 2013/12/03 |            |           | 105(1)     | 96 - 104  | <1               | uS/cm     |           |           |  |
| 7305978  | Alkalinity (Total as CaCO3) | 2013/12/03 |            |           | 106        | 80 - 120  | <0.5             | mg/L      |           |           |  |
| 7305978  | Alkalinity (PP as CaCO3)    | 2013/12/03 |            |           |            |           | <0.5             | mg/L      |           |           |  |
| 7305978  | Bicarbonate (HCO3)          | 2013/12/03 |            |           |            |           | <0.5             | mg/L      |           |           |  |
| 7305978  | Carbonate (CO3)             | 2013/12/03 |            |           |            |           | <0.5             | mg/L      |           |           |  |
| 7305978  | Hydroxide (OH)              | 2013/12/03 |            |           |            |           | <0.5             | mg/L      |           |           |  |
| 7305979  | Fluoride (F)                | 2013/12/02 | 92         | 80 - 120  | 92         | 80 - 120  | 0.019, RDL=0.010 | mg/L      | 7.1       | 20        |  |
| 7306560  | True Colour                 | 2013/11/29 |            |           | 100        | 94 - 106  | <5               | Col. Unit | NC        | 10        |  |
| 7306766  | Turbidity                   | 2013/12/03 |            |           | 100        | 80 - 120  | <0.1             | NTU       | 0         | 20        |  |
| 7306784  | Dissolved Aluminum (AI)     | 2013/12/03 | 118        | 80 - 120  | 107        | 80 - 120  | <3.0             | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Antimony (Sb)     | 2013/12/03 | 110        | 80 - 120  | 102        | 80 - 120  | <0.50            | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Arsenic (As)      | 2013/12/03 | NC         | 80 - 120  | 103        | 80 - 120  | <0.10            | ug/L      | 3.0       | 20        |  |
| 7306784  | Dissolved Barium (Ba)       | 2013/12/03 | NC         | 80 - 120  | 97         | 80 - 120  | <1.0             | ug/L      | 1.9       | 20        |  |
| 7306784  | Dissolved Beryllium (Be)    | 2013/12/03 | 108        | 80 - 120  | 98         | 80 - 120  | <0.10            | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Bismuth (Bi)      | 2013/12/03 | 103        | 80 - 120  | 94         | 80 - 120  | <1.0             | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Cadmium (Cd)      | 2013/12/03 | 102        | 80 - 120  | 99         | 80 - 120  | <0.010           | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Chromium (Cr)     | 2013/12/03 | 100        | 80 - 120  | 95         | 80 - 120  | <1.0             | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Cobalt (Co)       | 2013/12/03 | 100        | 80 - 120  | 100        | 80 - 120  | <0.50            | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Copper (Cu)       | 2013/12/03 | 95         | 80 - 120  | 99         | 80 - 120  | <0.20            | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Iron (Fe)         | 2013/12/03 | NC         | 80 - 120  | 107        | 80 - 120  | <5.0             | ug/L      | 1.2       | 20        |  |
| 7306784  | Dissolved Lead (Pb)         | 2013/12/03 | 100        | 80 - 120  | 94         | 80 - 120  | <0.20            | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Lithium (Li)      | 2013/12/03 | NC         | 80 - 120  | 103        | 80 - 120  | <5.0             | ug/L      | 1.1       | 20        |  |
| 7306784  | Dissolved Manganese (Mn)    | 2013/12/03 | NC         | 80 - 120  | 98         | 80 - 120  | <1.0             | ug/L      | 1.3       | 20        |  |
| 7306784  | Dissolved Molybdenum (Mo)   | 2013/12/03 | NC         | 80 - 120  | 95         | 80 - 120  | <1.0             | ug/L      | 1.9       | 20        |  |
| 7306784  | Dissolved Nickel (Ni)       | 2013/12/03 | 97         | 80 - 120  | 101        | 80 - 120  | <1.0             | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Selenium (Se)     | 2013/12/03 | 113        | 80 - 120  | 102        | 80 - 120  | <0.10            | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Silver (Ag)       | 2013/12/03 | 106        | 80 - 120  | 87         | 80 - 120  | <0.020           | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Strontium (Sr)    | 2013/12/03 | NC         | 80 - 120  | 96         | 80 - 120  | <1.0             | ug/L      | 0.3       | 20        |  |
| 7306784  | Dissolved Thallium (TI)     | 2013/12/03 | 103        | 80 - 120  | 97         | 80 - 120  | <0.050           | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Tin (Sn)          | 2013/12/03 | 110        | 80 - 120  | 95         | 80 - 120  | <5.0             | ug/L      | NC        | 20        |  |
| 7306784  | Dissolved Titanium (Ti)     | 2013/12/03 | 108        | 80 - 120  | 99         | 80 - 120  | <5.0             | ug/L      | NC        | 20        |  |



Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

#### QUALITY ASSURANCE REPORT

|          |                          | Matrix     | Spike      | Spiked    | Blank      | Method BI | ank    | RPD   |           |           |
|----------|--------------------------|------------|------------|-----------|------------|-----------|--------|-------|-----------|-----------|
| QC Batch | Parameter                | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value  | UNITS | Value (%) | QC Limits |
| 7306784  | Dissolved Uranium (U)    | 2013/12/03 | 101        | 80 - 120  | 94         | 80 - 120  | <0.10  | ug/L  | NC        | 20        |
| 7306784  | Dissolved Vanadium (V)   | 2013/12/03 | 104        | 80 - 120  | 97         | 80 - 120  | <5.0   | ug/L  | NC        | 20        |
| 7306784  | Dissolved Zinc (Zn)      | 2013/12/03 | 96         | 80 - 120  | 102        | 80 - 120  | <5.0   | ug/L  | NC        | 20        |
| 7306784  | Dissolved Boron (B)      | 2013/12/03 |            |           |            |           | <50    | ug/L  | 3.9       | 20        |
| 7306784  | Dissolved Silicon (Si)   | 2013/12/03 |            |           |            |           | <100   | ug/L  | 0.8       | 20        |
| 7306784  | Dissolved Zirconium (Zr) | 2013/12/03 |            |           |            |           | <0.50  | ug/L  | NC        | 20        |
| 7308597  | Total Aluminum (Al)      | 2013/12/05 | 99         | 80 - 120  | 106        | 80 - 120  | <3.0   | ug/L  | NC        | 20        |
| 7308597  | Total Antimony (Sb)      | 2013/12/05 | 98         | 80 - 120  | 103        | 80 - 120  | <0.50  | ug/L  | NC        | 20        |
| 7308597  | Total Arsenic (As)       | 2013/12/05 | 99         | 80 - 120  | 102        | 80 - 120  | <0.10  | ug/L  | NC        | 20        |
| 7308597  | Total Barium (Ba)        | 2013/12/05 | 93         | 80 - 120  | 102        | 80 - 120  | <1.0   | ug/L  | NC        | 20        |
| 7308597  | Total Beryllium (Be)     | 2013/12/05 | 102        | 80 - 120  | 103        | 80 - 120  | <0.10  | ug/L  | NC        | 20        |
| 7308597  | Total Bismuth (Bi)       | 2013/12/05 | 100        | 80 - 120  | 99         | 80 - 120  | <1.0   | ug/L  | NC        | 20        |
| 7308597  | Total Cadmium (Cd)       | 2013/12/05 | 101        | 80 - 120  | 101        | 80 - 120  | <0.010 | ug/L  | NC        | 20        |
| 7308597  | Total Chromium (Cr)      | 2013/12/05 | 96         | 80 - 120  | 101        | 80 - 120  | <1.0   | ug/L  | NC        | 20        |
| 7308597  | Total Cobalt (Co)        | 2013/12/05 | 97         | 80 - 120  | 100        | 80 - 120  | <0.50  | ug/L  | NC        | 20        |
| 7308597  | Total Copper (Cu)        | 2013/12/05 | NC         | 80 - 120  | 100        | 80 - 120  | <0.20  | ug/L  | 0.1       | 20        |
| 7308597  | Total Iron (Fe)          | 2013/12/05 | NC         | 80 - 120  | 106        | 80 - 120  | <5.0   | ug/L  | 2.6       | 20        |
| 7308597  | Total Lead (Pb)          | 2013/12/05 | 97         | 80 - 120  | 100        | 80 - 120  | <0.20  | ug/L  | 1.3       | 20        |
| 7308597  | Total Manganese (Mn)     | 2013/12/05 | NC         | 80 - 120  | 102        | 80 - 120  | <1.0   | ug/L  | 2.2       | 20        |
| 7308597  | Total Molybdenum (Mo)    | 2013/12/05 | 108        | 80 - 120  | 105        | 80 - 120  | <1.0   | ug/L  | NC        | 20        |
| 7308597  | Total Nickel (Ni)        | 2013/12/05 | 99         | 80 - 120  | 101        | 80 - 120  | <1.0   | ug/L  | NC        | 20        |
| 7308597  | Total Selenium (Se)      | 2013/12/05 | 101        | 80 - 120  | 102        | 80 - 120  | <0.10  | ug/L  | NC        | 20        |
| 7308597  | Total Silver (Ag)        | 2013/12/05 | 102        | 80 - 120  | 99         | 80 - 120  | <0.020 | ug/L  | NC        | 20        |
| 7308597  | Total Strontium (Sr)     | 2013/12/05 | NC         | 80 - 120  | 102        | 80 - 120  | <1.0   | ug/L  | 3.0       | 20        |
| 7308597  | Total Thallium (TI)      | 2013/12/05 | 97         | 80 - 120  | 103        | 80 - 120  | <0.050 | ug/L  | NC        | 20        |
| 7308597  | Total Tin (Sn)           | 2013/12/05 | NC         | 80 - 120  | 100        | 80 - 120  | <5.0   | ug/L  | NC        | 20        |
| 7308597  | Total Titanium (Ti)      | 2013/12/05 | 94         | 80 - 120  | 104        | 80 - 120  | <5.0   | ug/L  | NC        | 20        |
| 7308597  | Total Uranium (U)        | 2013/12/05 | 96         | 80 - 120  | 97         | 80 - 120  | <0.10  | ug/L  | NC        | 20        |
| 7308597  | Total Vanadium (V)       | 2013/12/05 | 94         | 80 - 120  | 96         | 80 - 120  | <5.0   | ug/L  | NC        | 20        |
| 7308597  | Total Zinc (Zn)          | 2013/12/05 | NC         | 80 - 120  | 105        | 80 - 120  | <5.0   | ug/L  | 4.0       | 20        |
| 7308597  | Total Boron (B)          | 2013/12/05 |            |           |            |           | <50    | ug/L  | NC        | 20        |
| 7308597  | Total Silicon (Si)       | 2013/12/05 |            |           |            |           | <100   | ug/L  | 0.2       | 20        |
| 7308597  | Total Zirconium (Zr)     | 2013/12/05 |            |           |            |           | <0.50  | ug/L  | NC        | 20        |
| 7308740  | Dissolved Mercury (Hg)   | 2013/12/05 | 91         | 80 - 120  | 97         | 80 - 120  | <0.010 | ug/L  | NC        | 20        |
| 7308914  | Total Dissolved Solids   | 2013/12/05 |            |           | 102        | 80 - 120  | <10    | mg/L  | 6.8       | 20        |



Thurber Engineering Ltd. Client Project #: 17-971-18 FISHER RD. GW MONITO Site Location: COBBLE HILL Sampler Initials: WP

#### QUALITY ASSURANCE REPORT

|          |                    |            | Matrix S   | Spike     | Spiked I   | Blank     | Method Blar | RPD   |           |           |
|----------|--------------------|------------|------------|-----------|------------|-----------|-------------|-------|-----------|-----------|
| QC Batch | Parameter          | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value       | UNITS | Value (%) | QC Limits |
| 7309228  | Total Mercury (Hg) | 2013/12/05 | 92         | 80 - 120  | 90         | 80 - 120  | <0.010      | ug/L  | NC        | 20        |
| 7309536  | Turbidity          | 2013/12/05 |            |           | 101        | 80 - 120  | <0.1        | NTU   | 0         | 20        |

N/A = Not Applicable

RDL = Reportable Detection Limit

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) - Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.



## Validation Signature Page

Maxxam Job #: B3B0786

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

melfte

Andy Lu, Data Validation Coordinator

David Nagler, AASc, Victoria Operations Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| Cont<br>Addr<br>Phor<br>E-m<br>REG | Ipany Name: T<br>lact Name: Ch<br>ress: 100<br>Vict<br>ne / Fax#: Phc 3                       | lee To: Ro<br>hurber<br>ad P<br>4396<br>oria<br>Da-220<br>Lersme | m<br>Chino Report? Yes<br>Engine<br>Engine<br>Elexismeye<br>West Sa<br>PC: VB12<br>PC: VB1 | Anich 1<br>3Eg<br>2-3710          | Phone / Fa                                                                                   | lame;<br>me; | M       | epor      | t To:                 |                           |              |                 |    | 07                   |                     |            | 90-302<br>PO #:<br>Quotati<br>Project<br>Proj. N<br>Locatio<br>Sample | on A:<br>a:<br>amo:<br>a: | 17-      | V<br>-93 | / 0:<br>H-      | •:_]<br>10 | _ of<br>81 | 1.2     |         | ì for                  |
|------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|--------------|---------|-----------|-----------------------|---------------------------|--------------|-----------------|----|----------------------|---------------------|------------|-----------------------------------------------------------------------|---------------------------|----------|----------|-----------------|------------|------------|---------|---------|------------------------|
|                                    | CSR<br>CCME<br>BC Water Quality<br>Dther<br>DRINKING WATER<br>Cial Instructions:<br>In Cooler | E                                                                | Regular Tum /<br>(5 days for mo<br>RUSH (Please<br>1 Day<br>Date Required<br>ample Bottles (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | st lests)<br>contact the<br>2 Day | lab)<br>3 Day                                                                                |              | 126     | HEDH      | sectors 1-4 Plus BTEQ | actions 2.4)              |              | Prends by (COIS | Mg |                      |                     |            | EQL santing option                                                    |                           |          |          | Eccl Food       |            | 24         |         |         | Anthree<br>No X        |
| 1 2 3                              | Sample Identifi<br>MW13-4<br>MW12-2<br>MW12-1                                                 | cation                                                           | Lab<br>Identification<br>(F1749<br>(F1750<br>(F175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample<br>Type                    | Date/Time<br>Sampled<br>Nov 28/13<br>@ 10:20<br>Uov 28/13<br>@ 13:00<br>Dov 28/13<br>@ 14:40 | Hawata       | Headnow | Ē         | COMERTIC IFI          | OCI28-PHO (Fluctions 2.4) | PC3 COMEGIEV | Prends by 444   | 38 | AXX Decred           | XXX<br>Tous name of | XX Names K | Ciriciés                                                              | Tothi Suppender           |          | 800      | Coltom, Total & | XXX R 1    | XX HIL     | CKX 7-N | avori i | OO O No. of Realing Ba |
| 4<br>5<br>7<br>8                   | Mw12-3                                                                                        |                                                                  | IF1752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | Noi 22/13<br>C 16 20                                                                         |              |         |           |                       |                           |              |                 |    | \$                   | X                   | x          |                                                                       |                           |          |          |                 | ×          | <u>X</u>   | X       |         | Drinking Water 8       |
| 9<br>10<br>11<br>12                | 2-10                                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                                                              |              |         |           |                       |                           |              |                 |    |                      |                     |            |                                                                       |                           | Internet |          | Usa Onl         |            |            |         |         | Samples are from a     |
| W                                  |                                                                                               | Date (YY/A<br>13/01<br>Mausten to p                              | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aller                             | CUSTORY RECORD. AN                                                                           |              | 20      | N3<br>Rag | Nou<br>19:15 (        | M/DD):<br>29<br>01,15au   | 09           | Піте:<br>22     |    | Tim<br>Sensi<br>LAYB |                     | 1 3        | 1                                                                     | ture of<br>7,             | n Rec    | eipt (   |                 | DECC 2     | 5          | N       | A       | ori Cool<br>No         |

000-1018 (10/11)

1

÷

Ŀ

11 加枯

#### Page 1

| ISOTOP     | E SCIENCE LABORATORY            | Results |                          |
|------------|---------------------------------|---------|--------------------------|
| Dept of (  | Geoscience                      | Contact | : S. Taylor              |
| Universit  | ty of Calgary, Room ES-513      | Tel.    | : (403) 210-6003         |
| 2500 Un    | iversity Dr. NW, Calgary, Alta. | Fax     | : (403) 220 7773         |
| T2N-1N4    | 4                               | e-mail  | steve.taylor@ucalgary.ca |
| Name:      | Chad Petersmeyer                | IN      | December 5, 2013         |
| Affiliate: | Thurber Engineering             | OUT     | December 13, 2013        |
| Address:   | 100, 4396 West Saanich Road     |         |                          |
|            |                                 | phone:  | 250-727-2201             |
|            | Victoria, BC                    | fax:    | 250-727-3710             |
|            | Canada                          | email:  | cpetersmeyer@thurber.ca  |
|            | V8Z 3E9                         |         |                          |

| PO# : |         |           |            |                 |                           |                          |          |                                  |
|-------|---------|-----------|------------|-----------------|---------------------------|--------------------------|----------|----------------------------------|
| #     | LIMs ID | SAMPLE ID | [N] (mg/L) | [NO3]<br>(mg/L) | $\delta^{15} N_{nitrate}$ | $\delta^{18}O_{nitrate}$ | Comments | subsequents<br>ubmission<br>date |
| 1     | N-5101  | MW12-1    | 23.2       | 102.7           | 8.4                       | 5.9                      |          |                                  |
| 2     | N-5102  | MW12-2    | 91.7       | 406.1           | 4.9                       | 23.7                     |          |                                  |
| 3     | N-5103  | MW12-3    | 16.9       | 74.8            | 12.3                      | 3.7                      |          |                                  |
| 4     | N-5104  | MW13-4    | 0.252      | 1.1             | 3.3                       | 4.6                      | 1        |                                  |
|       |         |           |            |                 |                           |                          | 1        |                                  |

#### $\delta^{15}\text{N-N2}$ and $\delta^{18}\text{O-SMOW}$ of dissolved nitrate (denitrifier technique - Delta+XL)

All results reported in the usual permil notation relative to IAEA stds <sup>15</sup>N <sup>18</sup>O IAEA values used to normalize data IAEA N1 IAEA N1  $0.4 \pm 0.2$ IAEA N2 IAEA N2 20.3 ± 0.2 IAEA NO3 IAEA NO3 4.7 ± 0.2 25.6 ± 0.4 USGS 32 USGS 32 180 ± 1.0  $25.7 \pm 0.4$ USGS 34 USGS 34 -1.8 ± 0.2 -27.9 ± 0.6 USGS 35 USGS 35 57<u>.5 ± 0.6</u> 2.7 ± 0.2 Precision and accuracy as 1 sigma of (n=10) lab stds are: 0.5 for  $\delta^{15}N$ for  $\delta^{18}O$ 1.0